
DIGITAL NOTES ON

 COMPUTER ORGANIZATION AND

ARCHITECTURE

(R20A0411)

B.Tech

(III Year-I Sem)
(2023-2024)

Prepared by

Ms.D.Asha, Associate Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS ENGG.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

 (Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO
9001:2015 Certified)

Maisammaguda, Dhulapally (Kompally), Secunderabad – 500100, Telangana State, India
www.mrcet.ac.in

http://www.mrcet.ac.in/

B.Tech (Electronics & Communication Engineering) R-20

Malla Reddy College of Engineering and Technology (MRCET)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
III Year B.Tech. ECE- I Sem L/T/P/C

3/-/-/3
(R20A0411) COMPUTER ORGANIZATION AND

ARCHITECTURE

COURSE OBJECTIVES:
The students will be exposed:

1. To how the Computer Systems work and its basic principles.
2. To ALU operations, Fixed point Arithmetic and floating point Arithmetic.
3. To Instruction set architecture and execution cycle and different types of Control Units.
4. To Memory System Design and different types of Memories.
5. To how the I/O devices are accessed and its principles.
6. To the concepts of pipelining and Parallel Processing.

UNIT-I:
Functional Blocks of a Computer: CPU, memory, Input-Output Unit, control unit, Basic

operational Concepts, Von Neumann Architecture.

Data Representation: Signed number representation, fixed and floating point

Representations, Computer Arithmetic– integer Addition and Subtraction, Ripple carry

adder, carry look-ahead adder, Multiplication – shift-and add, Booth multiplier, carry save

Addition, Division restoring and non-restoring techniques, Floating point arithmetic.

UNIT–II:
Introduction to x86 Architecture

Instruction set Architecture of a CPU: Register Transfer Language, Register Transfer, Memory

Transfer, Instruction Cycle, Addressing modes, Instruction set, CISC vs RISC Architecture.

CPU Control unit design: Hardwired and Micro-programmed design approaches.

UNIT–III:
Memory system design: Semiconductor memory technologies, internal memory

organization.

Memory Organization: Memory Hierarchy, Memory interleaving, Cache memory,

mapping functions, write policies, Virtual Memory Management-Paging.

UNIT–IV:
Peripheral devices and their characteristics: I/O device interface, Data Transfer Modes, I/O

transfers – program controlled, interrupt driven and DMA, interrupts and exceptions, I/O

device interfaces–SCSI, USB

B.Tech (Electronics & Communication Engineering) R-20

Malla Reddy College of Engineering and Technology (MRCET)

UNIT–V:
Pipelining: Basic concepts of pipelining, pipelining hazards.

Parallel Processors: Introduction to parallel processors, Shared Memory Multiprocessors and

cache coherency.

TEXT BOOKS:
1. “Computer Organization and Embedded Systems”, 6th Edition by Carl Hamacher, McGraw Hill Higher

Education.

2. “Computer Organization and Design”, The Hardware/Software Interface”, 5th Edition by David A. Patterson

and John L. Hennessy, Elsevier.

3. Computer System Architecture|, 3rd Edition by M. Morris Mano, Pearson.

REFERENCE BOOKS:
1. “Computer Architecture and Organization”, 3rd Edition by John P. Hayes, WCB /McGraw-Hill

2. “Computer Organization and Architecture: Designing for Performance”, 10th Edition by William Stallings,

Pearson Education.

3. “Computer System Design and Architecture”, 2nd Edition by Vincent P. Heuring and Harry F. Jordan, Pearson

Education.

COURSE OUTCOMES:

1. Make students understand the working of Computer Systems work and its basic principles
2. Make students understand ALU operations, Fixed point Arithmetic and floating point Arithmetic.
3. Make students understand different types of instructions and Instruction execution cycle along with

types of Control Units.
4. Make students understand Memory System Design and different types of Memories like cache and

virtual memory.
5. Make students understand the access of I/O devices and its principles.
6. Make students understand the concepts of pipelining and Parallel Processing.

UNIT -1

Functional blocks of a computer:

A computer consists of five functionally independent main parts:

1. input

2. memory

3. arithmetic and logic

4. output

5. control unit

Fig:Basic functional units of a computer.

1. The input unit accepts coded information from human operators using devices such as keyboards,

or from other computers over digital communication lines.

2. The information received is stored in the computer’s memory, either for later use or to be

processed immediately by the arithmetic and logic unit.

3. The processing steps are specified by a program that is also stored in the memory.

4. Finally, the results are sent back to the outside world through the output unit. All of these actions

are coordinated by the control unit.

5. An interconnection network provides the means for the functional units to exchange information

and coordinate their actions.

Aprogram is a list of instructions which performs a task. Programs are stored in the memory.The

processor fetches the program instructions from the memory, one after another, and perform the desired

operations. The computer is controlled by the stored program, exceptfor possible external interruption by

an operator or by I/O devices.The instructions and data handled by a computer is encoded as a string of

binary bits.

• Input Unit: Computers accept coded information through input units. The most common input

device is the keyboard. Whenever a key is pressed, the corresponding letter or digit is

automatically translated into its corresponding binary code and transmitted to the processor.

Microphones can be used to capture audio input which is then sampled and converted into digital

codes for storage and processing. Similarly, cameras can be used to capture video input.

Eg: touchpad, mouse, joystick

• Memory Unit:

The function of the memory unit is to store programs and data. There are two classes of storage, called

primary and secondary.

Primary Memory: Primary memory, also called main memory, is a fast memory that operates at

electronicspeeds. Programs must be stored in this memory while they are being executed.The

memory consists of a large number of semiconductor storage cells, each capable of storingone bit

of information.The memory is organized so that one word canbe stored or retrieved in one basic

operation. The number of bits in each word is referred to as the word length of the computer,

typically 16, 32, or 64 bits.To provide easy access to any word in the memory, a distinct address is

associatedwith each word location. Addresses are consecutive numbers, starting from 0, that

identify successive locations. A particular word is accessed by specifying its address and issuing

acontrol command to the memory that starts the storage or retrieval process.Instructions and data

can be written into or read from the memory under the control ofthe processor. A memory in

which any location can be accessed in a short and fixed amount of time after specifying its address

is called a random-access memory (RAM). The timerequired to access one word is called the

memory access time. This time is independent ofthe location of the word being accessed.

Cache Memory: As an adjunct to the main memory, a smaller, faster RAM unit, called a cache, is

used to hold sections of a program that are currently being executed, along with any associated

data. The cache is tightly coupled with the processor and is usually contained on the same

integrated-circuit chip. The purpose of the cache is to facilitate high instruction execution rates. At

the start of program execution, the cache is empty. As execution proceeds, instructions are fetched

into the processor chip, and a copy of each is placed in the cache. When the execution of an

instruction requires data located in the main memory, the data are fetched and copies are also

placed in the cache.

Secondary Storage: Although primary memory is essential, it tends to be expensive and does not

retain information when power is turned off. Thus additional, less expensive, permanent

secondarystorage is used when large amounts of data and many programs have to be stored,

particularlyfor information that is accessed infrequently. Access times for secondary storage are

longer than for primary memory. Awide selection of secondary storage devices is available,

including magnetic disks, optical disks (DVD and CD), and flash memory devices.

Arithmetic and Logic Unit: Most computer operations are executed in the arithmetic and logic unit

(ALU) of the processor. Any arithmetic or logic operation, such as addition, subtraction, multiplication,

division, or comparison of numbers, is initiated by bringing the required operands into the processor,

where the operation is performed by the ALU. For example, if two numbers located in the memory are to

be added, they are brought into the processor, and the addition is carried out by the ALU. The sum may

then be stored in the memory or retained in the processor for immediate use. When operands are brought

into the processor, they are stored in high-speed storage elements called registers. Each register can store

one word of data.

Output Unit: The output unit is the counterpart of the input unit. Its function is to send processed results

to the outside world. A familiar example of such a device is a printer. Some units, such as graphic

displays, provide both an output function, showing textand graphics, and an input function, through

touchscreen capability.

Control Unit: The memory, arithmetic and logic, and I/O units store and process information and

perform input and output operations. The operation of these units must be coordinated in some way. This

is the responsibility of the control unit. The control unit is effectively the nerve center that sends control

signals to other units and senses their states. Control circuits are responsible for generating the timing

signals that govern the transfers and determine when a given action is to take place. In practice, much of

the control circuitry is physically distributed throughout the computer. A large set of control lines (wires)

carries the signals used for timing and synchronization of events in all units.

Basic Operational Concepts

To perform a given task, an appropriate program consisting of a list of instructions is stored in the

memory. Individual instructions are brought from the memory into the processor, which executes the

specified operations. Data to be used as instruction operands are also stored in the memory.A typical

instruction might be

Load R2, LOC

This instruction reads the contents of a memory location whose address is represented symbolically by the

label LOC and loads them into processor register R2.The original contents of location LOC are preserved,

whereas those of register R2 are overwritten.Execution of this instruction requires several steps.

1. . First, the instruction is fetched from the memory into the processor.

2. Next, the operation to be performed is determined by the control unit.

3. The operand at LOC is then fetched from the memory into the processor.

4. Finally, the operand is stored in register R2.

Let us consider another example

Add R4, R2, R3

This instruction adds the contents of registers R2 and R3, then places their sum into register R4. The

operands in R2 and R3 are not altered, but the previous value in R4 is overwritten by the sum. After

completing the desired operations, the results are in processor registers. They can be transferred to the

memory using instructions such as

Store R4, LOC

This instruction copies the operand in register R4 to memory location LOC. The original contents of

location LOC are overwritten, but those of R4 are preserved.For Load and Store instructions, transfers

between the memory and the processor are initiated by sending the address of the desired memory

location and asserting the appropriate control signals.The data are then transferred to or from the

memory.Figure 1.1 shows how the memory and the processor can be connected.

In addition to the ALU and the control circuitry, the processor contains a number of registers used for

several different purposes. The instruction register (IR) holds the instruction that is currently being

executed. Its output is available to the control circuits, which generate the timing signals that control the

various processing elements involved in executing the instruction.

Fig 1.1: Connection between the processor and the main memory

PC: The program counter (PC) is another specialized register.contains the memory address of the next

instruction to be fetched and executed. During the execution of an instruction, the contents of the PC are

updated to correspond to the address of the next instruction to be executed.

General purpose Registers: There are also general-purpose registers R0 through Rn−1, often called

processor registers. They serve a variety of functions, including holding operands that have been loaded

from the memory for processing.

Processor Memory Interface: The processor-memory interface is a circuit which manages the transfer

of data between the main memory and the processor. If a word is to be read from the memory, the

interface sends the address of that word to the memory along with a Read control signal. The interface

waits for the word to be retrieved, then transfers it to the appropriate processor register.If a word is to be

written into memory, the interface transfers both the address and the word to the memory along with a

Write control signal.

Following are typical operating steps:

1) A program must be in the main memory in order for it to be executed. It is often transferred there

from secondary storage

2) Execution of the program begins when the PC is set to point to the first instruction of the program.

3) The contents of the PC are transferred to the memory along with a Read control signal. When the

addressed word (in this case, the first instruction of the program) has been fetched from the

memory it is loaded into register IR. At this point, the instruction is ready to be decoded and

executed.

4) If an operand that resides in the memory is required for an instruction, it is fetched by sending its

address to the memory and initiating a Read operation. When the operand has been fetched from

the memory, it is transferred to a processor register “R”.

5) After operands have been fetched in this way, the ALU can perform a desired arithmetic

operation, such as Add, on the values in processor registers. The result is sent to a processor

register.

6) If the result is to be written into the memory with a Store instruction, it is transferred from the

processor register to the memory, along with the address of the location where the result is to be

stored, then a Write operation is initiated.

At some point during the execution of each instruction, the contents of the PC are incremented so that the

PC points to the next instruction to be executed. Thus, as soon as the execution of the current instruction

is completed, the processor is ready to fetch a new instruction.

Normal execution of a program may be preempted if some device requires urgent service. For example, a

monitoring device in a computer-controlled industrial process may detect a dangerous condition. In order

to respond immediately, execution of the current program must be suspended. To cause this, the device

raises an interrupt signal, which is a request for service by the processor. The processor provides the

requested service by executing a program called an interrupt-service routine. When the interrupt-service

routine is completed, the state of the processor is restored from the memory so that the interrupted

program may continue.

Von Neumann Architecture:

The Von-Neumann Architecture or Von-Neumann model is also known as “Princeton Architecture”.

This architecture was published by the Mathematician John Von Neumann in 1945.

Von Neumann architecture is the design upon which many general purpose computers are based. This

architecture implemented the stored program concept in which the data and instructions are stored in the

same memory. This architecture consists of a CPU(ALU, Registers, Control Unit), Memory and I/O unit.

Following are the components of Von Neumann Architecture:

1. CPU(Central processing unit)

▪ CU(Control Unit)

▪ ALU(Arithmetic and logic unit)

▪ Registers

✓ PC(Program Counter)

✓ IR(Instruction Register)

✓ AC(Accumulator)

✓ MAR(Memory Address Register)

✓ MDR(Memory Data Register)

2. BUSES

3. I/o Devices

4. Memory Unit

1. CPU: CPU acts as the brain of the computer and is responsible for the execution of instructions.

a) Control Unit: A control unit (CU) handles all processor control signals. It directs all input

and output flow, fetches code for instructions, and controls how data moves around the

system.

b) Arithmetic and Logic Unit (ALU) :

The arithmetic logic unit is that part of the CPU that handles all the calculations the CPU

may need, e.g. Addition, Subtraction, Comparisons. It performs Logical Operations, Bit

Shifting Operations, and Arithmetic operations.

c) Registers: A processor based on von Neumann architecture has five

special registers which it uses for processing:

• Program counter (PC) holds the memory address of the next instruction to be

fetched from primary storage.

• The Memory Address Register(MAR) holds the address of the current

instruction that is to be fetched from memory, or the address in memory to which

data is to be transferred.

• The Memory Data Register(MDR) holds the contents found at the address held

in MAR or data which is to be transferred to the primary storage.

• The Current Instruction Register(CIR) holds the instruction that is currently

being decoded and executed.

• The Accumulator is a special purpose Register and is used by the ALU to hold

the data being processed and the results of calculations.

2.BUSES :A bus is a subsystem that is used to connect computer components and transfer data between

them. There are three types of BUSES

a) Data Bus: It carries data among the memory unit, the I/O devices, and the processor.

b) Address Bus: It carries the address of data (not the actual data) between memory and

processor.

c) Control Bus: It carries control commands from the CPU (and status signals from other devices)

in order to control and coordinate all the activities within the computer.

3. I/o Devices:Program or data is read into main memory from the input device or secondary storage

under the control of CPU input instruction. Output devices are used to output the information from a

computer. If some results are evaluated by CPU and it is stored in the computer, then with the help of

output devices, we can present them to the user.

4. Memory:A memory unit is a collection of storage cells together with associated circuits needed to

transfer information in and out of the storage. The memory stores binary information in groups of bits

called words. The internal structure of a memory unit is specified by the number of words it contains and

the number of bits in each word(2Mx N, eg: 128KB).

There are two types of Primary Memory:

1)RAM: VOLATILE MEMORY or temporary Memory(to store the program in execution)

2)ROM: NON-VOLATILE MEMORY or permanent Memory(to store the booting program)

NUMBER REPRESENTATION:

UNSIGNED INTEGERS

These are binary numbers that are always assumed to be positive.Here all available bits of the number are

used to represent the magnitude of the number.No bits are used to indicate itssign, hence they are called

unsigned numbers.

E.g.: Roll Numbers, Memory addresses etc

SIGNED INTEGERS

These are binary numbers that can be either positive or negative. The MSB of the number indicates

whether it is positive or negative. If MSB is 0 then the number is Positive. If MSB is 1 then the

number is Negative. Negative numbers are always stored in 2’s complement form.

Three systems are used forrepresenting such numbers:

• Signed magnitude

• 1’s-complement

• 2’s-complement

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers.Positive values

have identical representations in all systems, but negative values have different representations.

NUMBERS

Integers FLOATING POINT

NUMBERS

REAL WORLD

(DECIMAL SYSTEM)

INSIDE COMPUTER SYSTEM

STORED IN BINARY

(HEX FORMAT)

UNSIGNED

NUMBERS

(ONLY POSITIVE)

SIGNED NUMBERS

(BOTH POSTIVE AND

NEGATIVE

In the signed magnitude system, negative values are represented by changing the mostsignificant bit

from 0 to 1.For example, +5 is represented by 0101, and −5 is represented by 1101.

In 1’s-complement representation, negative values are obtained by complementing eachbit of the

corresponding positive number. Thus, the representation for −3 is obtainedby complementing each bit in

the vector 0011 to yield 1100.The same operation, bitcomplementing, is done to convert a negative

number to the corresponding positive value.

Fig: Binary signed number Representations

Two’s complement gives a unique representation for zero.Any other system gives a separate

representation for +0 and for -0. This is absurd. In two’s complement system, -(x) is stored as two’s

complement of (x). Applying the same rule for 0, -(0) should be stored as two’s complement of 0. 0 is

stored as 000. So –(0) should be stored as two’s complement of 000, which again is 000. Hence two’s

complement gives a unique representation for 0.It produces an additional number on the negative

side. As two’s complement system produces a unique combination for 0, it has a spare combination

‘1000’ in the above case, and can be used to represent –(8).

Fixed and Floating point Representations:

There are two major approaches to store real numbers (i.e., numbers withfractional component) in modern

computing. These are

(i) Fixed Point Notation and

(ii) Floating Point Notation.

Fixed Point Notation:In fixed point notation, there are a fixed number of digits after the decimal point,

whereas floating point number allows for avarying number of digits after the decimal point.

This representation has fixed number of bits for integer part and for fractional part. For example, if given

fixed-point representation is IIII.FFFF, then you can store minimum value is 0000.0001 and maximum

value is 9999.9999. There are three parts of a fixed-point number representation: the sign field, integer

field, and fractional field.

Assume number is using 32-bit format which reserve 1 bit for the sign, 15 bits for the integer part and 16

bits for the fractional part. Then, -43.625 is represented as following:

Where, 0 is used to represent + and 1 is used to represent -. 000000000101011 is 15-bit binary value for

decimal 43 and 1010000000000000 is 16-bit binary value for fractional 0.625.

The advantage of using a fixed-point representation is performance and disadvantage is relatively limited

range of values that they can represent. So, it is usually inadequate for numerical analysis as it does not

allow enough numbers and accuracy. A number whose representation exceeds 32 bits would have to be

stored inexactly.

Floating Point Representation:

In some numbers, which have a fractional part, the position of the decimal point is not fixed as the

number of bits before (or after) the decimal point may vary. Eg: 0010.01001, 0.0001101, -1001001.01

etc. the position of the decimal point is not fixed, instead it"floats" in the number.Such numbers are

called Floating Point Numbers. Floating Point Numbers are stored in a "Normalized" form.

NORMALIZATION OF A FLOATING POINTNUMBER:

Normalization is the process of shifting the point, left or right, so that there is only one non-zero digit to

the left of the point.

01010.01 (-1)0 x 1.01001 x 23

11111.01 (-1)0 x 1.111101 x 24

-10.01 (-1)1 x 1.001 x 21

A normalized form of a number is:

-1s x1.MX2E

Where: S = Sign, M = Mantissa and E = Exponent.

As Normalized numbers are of the 1.M format, the "1" is not actually stored, it is instead assumed. Also

the Exponent is stored in the biased form by adding an appropriate bias value to it so that -ve exponents

can be easily represented.

Advantages of Normalization.

1. Storing all numbers in a standard for makes calculations easier and faster.

2. By not storing the 1 (of 1.M format) for a number, considerable storage space is saved.

3. The exponent is biased so there is no need for storing its sign bit (as the biased exponent cannot be -

ve).

SHORT REAL FORMAT / SINGLE PRECISION FORMAT / IEEE 754: 32 BIT FORMAT:

1. 32 bits are used to store the number.

2. 23 bits are used for the Mantissa.

3. 8 bits are used for the Biased Exponent.

4. 1 bit used for the Sign of the number.

5. The Bias value is (127)10.

Range:

LONG REAL FORMAT / DOUBLE PRECISION FORMAT / IEEE 754: 64 BIT FORMAT

1. 64 bits are used to store the number.

2. 52 bits are used for the Mantissa.

3. 11 bits are used for the Biased Exponent.

4. 1 bit used for the Sign of the number.

5. The Bias value is (1023)10.

6. The range is +10-308 to +10308approximately.

s Biased Exponent Mantissa

1 bit 11-bits (Bias value:1023) 52-bits

Extreme cases of floating point numbers:

Floating point numbers are represented in IEEE formats.Consider IEEE 754 32-bit format also

called Single Precision format or Short real format.

Overflow:

For a value, 1.0 the normalized form will be

(-1)0 x 1.0 x 20

Herethe True Exponent is 0.

This is because the 8-bit biased exponent cannot hold a value more than 255.Hence, all cases where the

TE = 128 or more, the BE will be represented as 1111 1111.This indicates as exception (error) called

OVERFLOW. The number is called NaN (Not a Number).It is identified by Exponent being all 1s (1111

1111).Here, the Mantissa can be anything!The Extreme case of NaN is Infinity.It is also an

OVERFLOW and hence the Exponent will be 1111 1111.To differentiate Infinity from NaN, the

Mantissa in infinity is 0000 0000.Hence Infinity is identified as Exponent all 1s and Mantissa all 0s.

Suppose the number is 0.1.It will be normalized as

(-1)0 x 1.0 x 2-1

The true exponent here is -1.

Underflow: All cases where the TE = -127 or less, the BE will be represented as 0000 0000.This

indicates as exception (error) called UNDERFLOW.

The number is called De-Normal Number.It is identified by Exponent being all 0s (0000

0000).Here, the Mantissa can be anything.The Extreme case of De-Normal Number is Zero.

It is also an UNDERFLOW and hence the Exponent will be 0000 0000.To differentiate Zero from

De-Normal Number, the Mantissa in Zero is 0000 0000.Hence Zero is identified as Exponent all

0s and Mantissa all 0s.This means Zero is represented as all 0s.

Example:Convert 2A3BH into Short Real format.

Soln: Converting the number into binary we get:

0010 1010 0011 1011

Normalizing the number we get:

(-1)0x 1.0101000111011 x 213

Here S = 0; M = 0101000111011; True Exponent = 13.

Bias value for Short Real format is 127:

Biased Exponent (BE) = True Exponent + Bias

= 13 + 127

= 140.

Converting the Biased exponent into binary we get:

Biased Exponent (BE) = (1000 1100)

Representing in the required format we get:

0 10001100 010100011101100…

S Biased Exp Mantissa

(1) (8) (23)

Computer Arithmetic

Integer Addition:

Addition of Unsigned Integers: Addition of 1-bit numbers is illustrated below.The sum of 1 and

1 is the 2-bit vector 10, which represents the value 2. We say that the sum is 0 and the carry-out is

1. In order to add multiple-bit numbers, We add bit pairs starting from the low-order (right)

end of the bit vectors, propagating carries toward the high-order (left) end. The carry-out from a

bit pair becomes the carry-in to the next bit pair to the left. The carry-in must be added to a bit pair

in generating the sum and carry-out at that position. For example, if both bits of a pair are 1 and

the carry-in is 1, then the sum is 1 and the carry-out is 1, which represents the value 3.

Fig: Addition of 1-bit Numbers

Addition and Subtraction of Signed Integers:

• To add two numbers, add their n-bit representations, ignoring the carry-out bit fromthe most

significant bit (MSB) position. The sum will be the algebraically correct value in2’s-complement

representation if the actual result is in the range−(2n−1) through+2n−1– 1.

• To subtract two numbers X and Y, that is, to perform X − Y , form the 2’s-complement of Y , then

add it to X using the add rule. Again, the result will be the algebraically correct value in 2’s-

complement representation if the actual result is in the range −(2n−1) through+2n−1.

X-Y = X+(-Y) = X+(2’S Complement of Y)

Example: To perform 7-3 using 2’s complement addition

If we ignore the carry-out from the fourth bit position in this addition, we obtain the correct answer.

Few more examples:

Sign Extension:We often need to represent a value given in a certain number of bits by using a larger

number of bits. For a positive number, this is achieved by adding 0s to the left. For a negative number in

2’s-complement representation, the leftmost bit, which indicates the sign of the number, is a 1. A longer

number with the same value is obtained by replicating the sign bit to the left as many times as needed.

Overflow in Integer Arithmetic:Using 2’s-complement representation, n bits can represent values in the

range −(2n−1) through+2n−1.For example, the range of numbers that can be represented by 4 bits is

−8through +7.When the actualresult of an arithmetic operation isoutside the representable range, an

arithmetic overflow has occurred.

Introduction to adder circuits:

ONE BIT ADDITION: FULL ADDER

1) It is a 1-bit adder circuit.

2) It adds two 1-bit inputs Xi & Yi, along with a Carry Input Cin.

3) It produces a sum Zi and a Carry output Cout.

4) As it considers a carry input, it can be used in combination to add large numbers.

5) Hence it is called a Full Adder.

Fig: Circuit for Sum

Fig: Circuit for carry

RIPPLE CARRY ADDER(For Multiple bit addition):

1)A Full Adder can add two “1-bit” numbers with a Carry input.

2) It produces a “1-bit” Sum and a Carry output.

3) Combining many of these Full Adders, we can add multiple bits.

4) One such method is called Serial Adder.

5) Here, bits are added one-by-one from Least significant bit(LSB) onwards.

6) The carries are connected in a chain through the full adders. The Carry of each stage is propagated

(Rippled) into the next stage.

7) Hence, these adders are also called Ripple Carry Adders.

Advantage: They are very easy to construct.

Drawback: As addition happens bit-by-bit, they are slow.

8) Number of cycles needed for the addition is equal to the number of bits to be added.

Inputs:

Assume X and Y are two “4-bit” numbers to be added, along with a Carry input CIN.

X = X0 X1 X2 X3 (X0 is the MSB … X3 is the LSB)

Y = Y0 Y1 Y2 Y3 (Y0 is the MSB … Y3 is the LSB)

CIN = Carry Input

Outputs:

Assume Z to be a “4-bit” output, and COUT to be the output Carry

Z = Z0 Z1 Z2 Z3 (Z0 is the MSB … Z3 is the LSB)(Here Z represents the sum)

COUT = Carry Output

Fig:4-bit Ripple Carry Adder

Carry Look ahead Adder(For multiple bit Addition):

1) This is also called as parallel adder. It is used to add multiple bits simultaneously.

2) While adding multiple bits, the main issue is that of the intermediate carries.

3) In Serial Adders, we therefore added the bits one-by-one.

4) This allowed the carry at any stage to propagate to the next stage.

5) But this also made the process very slow.

6) If we “PREDICT” the intermediate carries, then all bits can be added simultaneously.

7) This is done by the Carry Look Ahead Generator Circuit.

8) Once all carries are determined beforehand, then all bits can be added simultaneously.

 Advantage: This makes the addition process extremely fast.

 Drawback: Circuit is complex.

Inputs:

Assume X and Y are two “4-bit” numbers to be added, along with a Carry input CIN.

X = X0 X1 X2 X3 (X0 is the MSB … X3 is the LSB); Y = Y0 Y1 Y2 Y3 & CIN = Carry Input

Outputs:

Assume Z to be a “4-bit” output, and COUT to be the output Carry

Z = Z0 Z1 Z2 Z3 & COUT = Carry Output

Fig: Circuit for Carry Look ahead Adder

We can “Predict” (Look Ahead) all the intermediate carries in the followingmanner:

The carry at any stage can be calculated as:

 This implies Ci = Gi + Pi.CIN

We need to predict the Carries: C3, C2, C1 and C0

C3 = G3 + P3CIN (I)

C2 = G2 + P2C3

Substituting the value of C3, we get:

C2 = G2 + P2G3 + P2P3CIN (II)

C1 = G1 + P1C2

Substituting the value of C2, we get:

C1 = G1 + P1G2 + P1P2G3 + P1P2P3CIN (III)

C0 = G0 + P0C1

Substituting the value of C1, we get:

C0 = G0 + P0G1 + P0P1G2 + P0P1P2G3 + P0P1P2P3CIN (IV)

From the above four equations, it is clear that the values of all the four Carries (C3, C2, C1, C0) can be

determined beforehand even without doing the respective additions. To do this we need the values of all

G’s (Xi.Yi) and all P’s (Xi+Yi) and the original carry input CIN. This is done by the Carry Look Ahead

Generator Circuit.

Cycle 1: g1, p1, g2, p2, g3, p3, g0, p0are given to the carry look ahead generator.

Cycle 2: Input carries are given to the adders by the carry generator.

Cycle 3: Results are produced.

Total number of cycles required :3

Multiplication:

1) Shift and Add: This method is used to multiply two unsigned numbers. When we multiply two “N-

bit” numbers, the answer is “2 x N” bits. Three registers A, Q and M, are used for this process. Q

contains the Multiplier and M contains the Multiplicand. A (Accumulator) is initialized with 0. At the end

of the operation, the Result will be stored in (A & Q) combined. The process involves addition and

shifting. That is why it is called shift and add method.

Algorithm:

The number of steps required is equal to the number of bits in the multiplier.

1) At each step, examine the current multiplier bit starting from the LSB.

2) If the current multiplier bit is “1”, then the Partial-Product is the Multiplicand itself.

3) If the current multiplier bit is “0”, then the Partial-Product is the Zero.

4) At each step, ADD the Partial-Product to the Accumulator.

5) Now Right-Shift the Result produced so far (A & Q combined).

Repeat steps 1 to 5 for all bits of the multiplier.

The final answer will be in A & Q combined.

Fig: Shift and Add Multiplication

Example: Let us consider 7X6

Step C

Carry

A

Accumulator

Q

Multiplier

M

Multiplicand

Explanation

 0 0000 0110 0111 Initial Value

1 0

0

0000

0000

0110

0011

 Current Multiplier bit is

“0” so ADD “0” to

Accumulator and

Right-Shift

2 0

0

0111

0011

0011

1001

 Current Multiplier bit is

“1” so ADD Multiplicand

to Accumulator and

Right-Shift

3 0

0

1010

0101

1001

0100

 Current Multiplier bit is

“1” so ADD Multiplicand

to Accumulator and

Right-Shift

4 0

0

0101

0010

0100

1010

 Current Multiplier bit is

“0” so ADD “0” to

Accumulator and

Right-Shift

2) Booth Multiplier(For signed Multiplication):

Booth’s Algorithm is used to multiply two SIGNED numbers. When we multiply two “N-bit”

numbers, the answer is “2 x N” bits. Three registers A, Q and M, are used for this process.Q contains the

Multiplier and M contains the Multiplicand.A (Accumulator) is initialized with 0.At the end of the

operation, the Result will be stored in (A & Q) combined.The process involves addition, subtraction

and shifting.

Algorithm:

The number of steps required is equal to the number of bits in the multiplier.

At the beginning, consider an imaginary “0” beyond LSB of Multiplier

1) At each step, examine two adjacent Multiplier bits from Right to Left.

2) If the transition is from “0 to 1” then Subtract M from A and Right-Shift (A & Q) combined.

3) If the transition is from “1 to 0” then ADD M to A and Right-Shift.

4) If the transition is from “0 to 0” then simply Right-Shift.

5) If the transition is from “1 to 1” then simply Right-Shift.

Repeat steps 1 to 5 for all bits of the multiplier.

The final answer will be in A & Q combined.

Flowchart for Booth’s Algorithm:

Example: -9x10=-90

Multiplicand (M): -9 = 10111 9 = 01001. (Two’s Complement Form)

Multiplier (Q): 10 = 01010. -10 = 10110 (Two’s Complement Form)

step A

Accumulator

Q

Multiplier

Q(-1) M

Multiplicand

Initial 00000 01010 0 10111

1) (0 ç 0)

No Add or Sub

Right-Shift

00000

00000

01010

00101

0

0

2) (1 ç 0) 01001 00101 0

Perform (A - M)

Right-Shift

00100 10010 1

3) (0 ç 1)

Perform (A + M)

Right-Shift

11011

11101

10010

11001

1

0

4) (1 ç 0)

Perform (A - M)

Right-Shift

00110

00011

11001

01100

0

1

5) (0 ç 1)

Perform (A + M)

Right-Shift

11010

11101

01100

00110

1

0

Restoring and Non-Restoring Division:

Non Restoring Division:

1) Let Q register hold the divided, M register holds the divisor and A register is 0.

2) On completion of the algorithm, Q will get the quotient and A will get the remainder.

Algorithm:

The number of steps required is equal to the number of bits in the Dividend.

1) At each step, left shift the dividend by 1 position.

2) Subtract the divisor from A (perform A - M).

3) If the result is positive then the step is said to be “Successful”. In this case quotient bit will be “1” and

Restoration is NOT Required. The Next Step will also be Subtraction.

4) If the result is negative then the step is said to be “Unsuccessful”. In this case quotient bit will be “0”.

Here Restoration is NOT Performed. Instead, the next step will be ADDITION in place of subtraction.

As restoration is not performed, the method is called Non-Restoring Division.

Repeat steps 1 to 4 for all bits of the Dividend.

Example: (7) / (5)

Dividend (Q) = 7

Divisor (M) = 5

Accumulator (A) = 0

7 = 0111 5 = 0101

-7 = 1001-5 = 1011

 Accumulator

A(0)

Dividend

 Q(7)

Divisor

 M(5)

Initial Values 0000 0111 0101

Step 1:Left shift

A-M

Unsuccessful(-ve)

Next step: Add

0000

 +1011

1011

111_

 1110

Step 2:Left shift

A+M

Unsuccessful(-ve)

Next step: Add

0111

 +0101

1100

110_

 1100

Step 3:Left shift

A+M

Unsuccessful(-ve)

Next step: Add

 1001

 +0101

1110

100_

 1000

Step 4:Left shift

A+M

successful(+ve)

 1101

 +0101

0010

 000_

 0001

 Remainder:2 Quotient:1

RESTORING DIVISION (For unsigned Numbers)

1) Let Q register hold the divided, M register holds the divisor and A register is 0.

2) On completion of the algorithm, Q will get the quotient and A will get theremainder.

Algorithm:

The number of steps required is equal to the number of bits in the Dividend.

1) At each step, left shift the dividend by 1 position.

2) Subtract the divisor from A (perform A - M).

3) If the result is positive then the step is said to be “Successful”.In this case quotient bit will be “1” and

Restoration is NOT Required.

4) If the result is negative then the step is said to be “Unsuccessful”.In this case quotient bit will be

“0”.Here Restoration is performed by adding back the divisor.

Hence the method is called Restoring Division.Repeat steps 1 to 4 for all bits of the Dividend.

Example: (6) / (4)

Dividend (Q) = 6

Divisor (M) = 4

Accumulator (A) = 0

6 = 0110 4 = 0100

-6 = 1010 -4 = 1100

 Accumulator

A(0)

Dividend

 Q(6)

Divisor

 M(4)

Initial Values 0000 0110 0100

Step 1:Left shift

A-M

Unsuccessful(-ve)

Restoration:

0000

 + 1100

1100

 0000

 110_

 1100

Step 2:Left shift

A-M

Unsuccessful(-ve)

Restoration:

 0001

 +1100

1101

 0001

 100_

 1000

Step 3:Left shift

A-M

Unsuccessful(-ve)

Restoration:

 0011

 +1100

1111

 0011

 000_

 0000

Step 3:Left shift

A-M

Successful(+ve)

No Restoration

 0110

 +1100

0010

 000_

 0001

 Remainder(2) Quotient(1)

RESTORING DIVISION FOR SIGNED NUMBERS:

1) Let M register hold the divisor, Q register hold the divided.

2) A register should be the signed extension of Q.

3) On completion of the algorithm, Q will get the quotient and A will get the remainder.

Algorithm:

The number of steps required is equal to the number of bits in the Dividend.

1) At each step, left shift the dividend by 1 position.

2) If Sign of A and M is the same then Subtract the divisor from A (perform A - M),

Else Add M to A

3) After the operation,If Sign of A remains the same or the dividend (in A and Q) becomes zero,then the

step is said to be “Successful”.In this case quotient bit will be “1” and Restoration is NOT Required.

4) If Sign of A changes, then the step is said to be “Unsuccessful”.In this case quotient bit will be

“0”.Here Restoration is Performed.Hence, the method is called Restoring Division.Repeat steps 1 to 4 for

all bits of the Dividend.

Note: The result of this algorithm is such that, the quotient will always bepositive and the remainder

will get the same sign as the dividend.

Example: (-19) / (7)

19 = 010011 7 = 000111

-19 = 101101 -7 = 111001

 Accumulator

A(Sign Extension)

Dividend

 Q(-19)

Divisor

 M(7)

Initial Values 111111 101101 000111

Step 1: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

 111111

+ 000111

000110

 111111

01101_

011010

Step 2: Left-shift 111110 11010_

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

+ 000111

000101

 111110

110100

Step 3: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

 111101

+ 000111

000100

 111101

10100_

101000

Step 4: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

 111011

+ 000111

000010

 111011

01000_

010000

Step 5: Left-shift

Sign(A,M) Different: A+M

Sign still same: Successful

Restoration not required

 110110

+ 000111

111101

111101

10000_

100001

Step 6: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

111011

+ 000111

000010

111011

00001_

000010

 Remainder(-5) Quotient(2)

UNIT-2

Architecture of 8086:

Fig: 8086 internal Architecture

The architecture of 8086 supports a 16-bit ALU , a set of 16-bit registers, and provides segmented

memory addressing capability,fetched instruction queue for overlapped fetching and execution.

• Architecture of 8086 is pipeline type of architecture.

• The architecture of 8086 is divided into two functional parts i.e.,

i. Execution unit (EU)

ii. Bus interface unit (BIU)

 These two units work asynchronously.

• Functional division of architecture speeds up the processing, since BIU and EU operate parallelly

and independently i.e., EU executes the instructions and BIU fetches another instruction from the

memory simultaneously.

• As the whole architecture is divided into two independent functional parts and both the

subsystem’s operations can be overlapped, hence the architecture is PIPELINING type of

architecture.

EXECUTION UNIT

• The execution unit informs the BIU of the processor regarding from where to fetch the

instructions from and then executes these instructions.

• The execution unit consists of the following:

▪ General purpose registers

▪ Stack pointer

▪ Base pointer

▪ Index registers

▪ ALU

▪ Flag register(FLAGS/ PSW)

▪ Instruction decoder

▪ Timing and control unit

Functions of EU

• Tells BIU regarding from where to fetch instructions or to read data.

• Receives opcode of an instruction from the queue.

• decodes the instructions.

• Executes the instruction.

Functions of various parts of EU

• Control circuitry: Directs internal operations.

• Instruction Decoder: Translates instructions fetched from memory into series of actions.

• ALU: Performs arithmetic and logical operations.

• FLAGS: Reflects the status of program.

• General purpose registers: Used to store Temporary data.

• Index and Pointer registers: Specifies/ informs about offset of operand

BUS INTERFACE UNIT

• The BIU handles transfer of data and address between the processor and memory/ I/O devices by

computing address (Physical/ Effective address) and send the computed address to memory / I/O

and fetches instruction codes then stores them in FIFO register set called Queue register.

• The BIU consists of the following:

❖ Segment Registers

❖ Instruction pointer

❖ 6-Byte instruction Queue Register

Functions of BIU

• Handles transfer of data and address between processor and memory / I/O devices.

• Compute physical address and send it to memory interfaces.

• Fetches instruction codes and stores it in Queue

• Reads/Writes data from/to memory/ I/O devices

Functions of various parts of BIU

• Segment registers : Used to hold the starting address of the segment registers.

• Queue register: Used to store pre fetched instructions and inputs it to EU.

• Instruction Pointer: Used to point to the next instruction to be executed by EU.

• While the EU is decoding an instruction or executing an instruction which does not require use of

the buses, the BIU fetches up to six instruction bytes that will be following the present instruction

from memory and stores them in the queue register simultaneously.

Logical and Physical Address

• Addresses within a segment can range from address 00000h to address 0FFFFh. This corresponds

to the 64K-bytelength of the segment. An address within a segment is called an offset or logical

address.

• A logical address gives the displacement from the base address of the segment to the desired

location within it, as opposed to its "real" address, which maps directly anywhere into the 1

MByte memory space. This "real” address is called the physical address.

Difference between the physical and the logical address:

• The physical address is 20 bits long and corresponds to the actual binary code output by the BIU

on the address bus lines. The logical address is an offset from location 0 of a given segment.

Flag register of 8086

There are total 9 flags in 8086 and the flag register is divided into two types:

(a) Status Flags – There are 6 flags in 8086 microprocessor which become set(1) or reset(0)

depending upon condition after either 8-bit or 16-bit operation. These flags are

conditional/status flags.

The 6 status flags are:

(b) Sign Flag (S): This flag is set when the result of any computation is negative.

(c) Zero Flag (Z):This flag is set when the result of any computation or comparison performed is

zero.

(d) Auxiliary Cary Flag (AC): This flag is set when there is acarry from the lower nibble.

(e) Parity Flag (P): This flag is set when the lower byte of the result contains even number of 1’s .

(f) Overflow Flag:This flag will be set (1) if the result of a signed operation is too large to fit in the

number of bits available to represent it, otherwise reset (0).(eg:50+32= 82)

(g) Carry Flag (CY)): This flag is set when there is a carry out of the MSB in case of addition or a

borrow in case of subtraction.

Control Flags – The control flags enable or disable certain operations of the microprocessor.There are 3

control flags in 8086 microprocessor and these are:

Directional Flag (D) – This flag is specifically used by string manipulation instructions string

instructions. If this flag is 0,the string is processed beginning from the lowest address to the highest

address. If this flag is 1,the string is processed beginning from the highest address to the lowest address.

Interrupt Flag:If interrupt flag is set (1), the microprocessor will recognize interrupt requests from the

peripherals.

If interrupt flag is reset (0), the microprocessor will not recognize any interrupt requests and will ignore

them.

Trap Flag (T) –Setting trap flag puts the microprocessor into single step mode for debugging.

INSTRUCTION SET ARCHITECTURE OF CPU

Register Transfer Language:

• A digital computer system exhibits an interconnection of digital modules such as registers,

decoders, arithmetic elements, and Control logic. These digital modules are interconnected with

some common data and control paths to form a complete digital system. Digital modules are best

defined by the registers and the operations that are performed on the data stored in them.

• The operations performed on the data stored in registers are called Micro-operations. A

microoperation is an elementary operation performed on the information stored in oneor more

registers. The result of the operation may replace the previous binary information of a register or

may be transferred to another register. Examplesof microoperations are shift, count, clear, and

load.

• The Register Transfer Language is the symbolic representation of notations used to specify

the sequence of micro-operations.

In a computer system, data transfer takes place between processor registers and memory and

between processor registers and input-output systems. These data transfer can be represented by

standard notations given below:

o Notations R0, R1, R2..., and so on represent processor registers.

o The addresses of memory locations are represented by names such as LOC, PLACE, MEM, etc.

o Input-output registers are represented by names such as DATA IN, DATA OUT and so on.

o The content of register or memory location is denoted by placing square brackets around the name

of the register or memory location.

Register Transfer:

Computer registers are denoted by capital letters (sometimes followed by numerals) to denote the

function of the register. The register that holds an address for the memory unit is usually called a memory

address register and is denoted by MAR. Other registers are PC (for program counter), IR (for

instruction register, and R1 (for processor register). An n-bit register is sequence of n-flipflops numbered

from 0 through n-1, starting from 0 in the rightmost position and increasing the numbers toward the left.

The most common way to represent a register is by a rectangular box with the name of the register inside,

as shown in the figure below. The individual bits can be distinguished as shown in (b). The numbering of

bits in a 16-bit register can be marked on top of the box as shown in (c). A16-bit register is partitioned

into two parts in (d). Bits 0 through 7 are assigned the symbol L (for low byte) and bits 8 through 15 are

assigned the symbol H(for high byte). The name of the 16-bit register is PC. The symbol PC (0-7) or PC

(L) refers to the low-order byte and PC(8-15) or PC(H) to the high-order byte.

Fig: Block diagram of registers

Information transfer from one register to another is designated in symbolicform by means of a

replacement operator as shown below, which denotes a transfer of the contents of register R1 into register

R2.Contents of R2 are replaced by the contents of R1.By definition, thecontent of the source register R1

does not change after the transfer.register transfer implies that circuits areavailable from the outputs of the

source register to the inputs of the destinationregister.

R2 <--R1

Sometimes, we may want the transfer to occur only under a predetermined controlcondition. This can be

shown by means of an if-then statement

If (P = 1) then (R2 <--R1)

where P is a control signal generated in the control section.A control function is a Boolean variable that

isequal to 1 or 0. The control function is included in the statement as follows

P: R2 <--R1

The control condition is terminated with a colon. It symbolizes the requirementthat the transfer operation

be executed by the hardware only if P = 1.

Every statement written in a register transfer notation implies a hardwareconstruction for implementing

the transfer. Figure below shows the block diagramthat depicts the transfer from R1 to R2. The n outputs

of register R1 areconnected to the n inputs of register R2. The letter n will be used to indicateany number

of bits for the register. It will be replaced by an actual numberwhen the length of the register is known.

Register R2 has a load input that isactivated by the control variable P. It is assumed that the control

variable issynchronized with the same clock as the one applied to the register.

In the timing diagram below, P is activated in the control section by the rising edgeof a clock pulse at

time t . The next positive transition of the clock at time t + 1finds the load input active and the data inputs

of R2 are then loaded into theregister in parallel. P may go back to 0 at time t + 1; otherwise, the

transferwill occur with every clock pulse transition while P remains active.

Note:Even though the control condition such as P becomes active just after time t,the actual transfer does

not occur until the register is triggered by the nextpositive transition of the clock at time t + 1 .

Fig: Timing Diagram

Registers are denoted by capital letters, and numerals may follow the letters. Parentheses are used to

denote a part of a register by specifying the range of bits or by giving a symbol name to a portion of a

register. The arrow denotes a transfer of information and the direction of transfer. A comma is used to

separate two or more operations that are executed at the same time.

The statement

T: R2 <- R1, R1 <- R2

It denotes an operation that exchanges the contents of two registers during one common clock pulse

provided that T = 1.

The basic symbols of the register transfer notation are given below:

Fig: Basic symbols of register Transfer

Memory Transfer:

The transfer of information from a memory word to the outside environment is called a read operation.

The transfer of new information to be stored into the memory is called a write operation. A memory word

will be symbolized by the letter M.

The particular memory word among the many available is selected by thememory address during the

transfer. It is necessary to specify the address ofM when writing memory transfer operations. This will be

done by enclosingthe address in square brackets following the letter M.

Memory Read: Consider a memory unit that receives the address from a register, called the address

register, symbolized by AR. The data are transferred to another register, called the data register,

symbolized by DR. The read operation can be stated as follows:

Read: DR <- M [AR]

This causes a transfer of information into DR from the memory word M selected by the address in AR.

Memory Write: The write operation transfers the content of a data register to a memory word M selected

by the address. Assume that the input data is in register R1 and the address in AR. The write operation

can be stated symbolically as follows:

Write: M[AR] R1

This causes the transfer of information from R1 into the memory word M selected by the address in AR.

Instruction cycle:

In the basic computer each instruction cycle consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an indirect address.

4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch, decode, and execute the next

instruction. This process continues indefinitely unless a HALT instruction is encountered.

FETCH AND DECODE: Initially, the program counter PC is loaded with the address of the first

instruction in the program. The sequence counter SC is cleared to 0, providing a decoded timing signal

To. After each clock pulse, SC is incremented by one, so that the timing signals go through a sequence

T0, T1, T2, and so on.

The Micro-operations for the fetch and decode phases can be specified by the following register transfer

statements:

T0: AR PC

The address from PC to AR during the clock transition associated with timing signal T0.

T1: IR M[AR], PC PC + 1

The instruction read from memory is then placed in the instruction register IR with the clock transition

associated with timing signal T1. At the same time, PC is incremented by one to prepare it for the address

of the next instruction in the program

T2: D0, …, D7 Decode IR(12-14),AR IR(0-11), I IR(l5)

At time T2, the operation code in IR is decoded, the indirect bit is transferred to flip-flop I, and the

address part of the instruction is transferred to AR.

Decoding: The timing signal that is active after the decoding is T3. During time T3, the control unit

determines the type of instruction that was just read from memory. Decoder output D7, is equal to 1 if the

operation code is equal to binary 111. If D7 = 1, the instruction must be a register-reference or input-

output type. If D7 = 0, the operation code must be one of the other seven values 000 through

110,specifying a memory-reference instruction. Control then inspects the value of the first bit of the

instruction, which is now available in flip-flop I. If D7 = 0 and I = 1, we have a

memoryreferenceinstruction with an indirect address.The microoperation for the indirect addresscondition

can be symbolized by the register transfer statement:

AR M [AR]

When a memory-reference instruction with I = 0 is encountered, it is notnecessary to do anything since

the effective address is already in AR. However,the sequence counter SC must be incrementedso that

theexecution of the memory-reference instruction can be continued with timingvariable T4.After the

instruction is executed,SC is cleared to 0 and control returns to the fetch phase with T0 = 1 .

Register-reference instructions are recognized by the control when 07 = 1 andI = 0.The 12 bitsavailable

in IR(0-11) are transferred to AR during time T2.These instructions are executed with the clocktransition

associated with timing variable T3.The execution of a register-reference instruction is completedat time

T3.The sequence counter SC is cleared to 0 and the control goesback to fetch the next instruction with

timing signal T0.

Fig:Flowchart for instruction cycle

Addressing Modes

ADDRESSING MODES OF 8086:

Addressing modes is the manner in which operands are given in an instruction.The addressing modes of

8086 are as follows:

1) IMMEDIATE ADDRESSING MODE:In this mode the operand is specified in theinstruction

itself. Instructions are longer but the operands are easily identified.

Eg: MOV CL, 12H ; Moves 12 immediately into CL register

MOV BX, 1234H ; Moves 1234 immediately into BX register

2) REGISTER ADDRESSING MODE:In this mode operands are specified using registers.

Instructions are shorter but operands cant be identified by looking at the instruction.

Eg: MOV AX,BX

 ADD BX,CX

3) DIRECT ADDRESSING MODE:In this mode address of the operand is directly specified in the

instruction.

Eg:MOV CL, [2000H] ; CL Register gets data from memory location 2000H

CL [2000H]

MOV [3000H], DL ; Memory location 3000H gets data from DL Register

 [3000H] DL

4) INDIRECT ADDRESSING MODE: In Indirect Addressing modes, address is given by a

register. The register can be incremented in a loop to access a series of locations. There are

various sub-types of Indirect addressing mode.

REGISTER INDIRECT ADDRESSING MODE

This is the most basic form of indirect addressing mode.Here address is simply given by a register.

Eg: MOV CL, [BX] ; CL gets data from a memory location pointed by BX

 CL [BX]. If BX = 2000H, CL [2000H]

Eg: MOV [BX], CL ; CL is stored at a memory location pointed by BX

[BX] CL. If BX = 2000H, [2000H] CL.

REGISTER RELATIVE ADDRESSING MODE :Here address is given by a register plus a numeric

displacement.

Eg: MOV CL, [BX + 03H] ; CL gets data from a location BX + 03H

CL [BX+03H]. If BX = 2000H, then CL [2003H]

Eg: MOV [BX + 03H], CL ; CL is stored at location BX + 03H

 [BX+03H] CL. If BX = 2000H, then [2003H] CL.

BASE INDEXED ADDRESSING MODE Here address is given by a sum of two registers. This is

typically useful in accessing an array or a look up table. One register acts as the base of the array holding

its starting address and the other acts as an index indicating theelement to be accessed.

Eg: MOV CL, [BX + SI] ; CL gets data from a location BX + SI ; CL [BX+SI]. ;

 If BX = 2000H, SI = 1000H, then CL ç [3000H] Eg: MOV [BX + SI], CL ; CL is stored at location BX +

SI ; [BX+SI] CL. ; If BX = 2000H, SI = 1000H, then [3000H] CL.

BASE RELATIVE PLUS INDEX ADDRESSING MODEHere address is given by a sum of base

register plus index register plus a numeric displacement.

Eg: MOV CL, [BX+SI+03H] ; CL gets data from a location BX + SI + 03H ;

 CL [BX+SI+03H]. ;

If BX = 2000H, SI = 1000H, then CL [3003H]

Eg: MOV [BX+SI+03H], CL ; CL is stored at location BX + SI + 03H ;

[BX+SI+03H] CL. ;

If BX = 2000H, SI = 1000H, then [3003H] CL.

IMPLIED ADDRESSING MODE: In this addressing mode, the operand is not specified at all, as it is

an implied operand. Someinstructions operate only on a particular register. In such cases, specifying the

register becomesunnecessary as it becomes implied.

 Eg: STC ; Sets the Carry flag.; This instruction can only operate on the Carry Flag.

Eg: CMC ; Complements the Carry flag.; This instruction can only operate on the Carry Flag

Instruction Set:

Most computer instructions can be classified into three categories:

1. Data transfer instructions

2. Data manipulation instructions

3. Program control instructions

1) Data Transfer Instructions:Data transfer instructions move data from one place in the computer to

another without changing the data content. The most common transfers are between memory and

processor registers, between processor registers and input or output, and between the processor registers

themselves.Table below gives a list of eight data transfer instructions used in many computers.

Accompanying each instruction is a mnemonic symbol. Different computers use different mnemonics for

the same instruction name.

The load instruction has been used mostly to designate a transfer from memory to a processor register,

usually an accumulator. The store instruction designates a transfer from a processor register into

memory. The move instruction has been used in computers with multiple CPU registers to designate a

transfer from one register to another. It has also been used for data transfers between CPU registers and

memory or between two memory words. The exchange instruction swaps information between two

registers or a register and a memory word. The input and output instructions transfer data among

processor registers and input or output terminals. The push and pop instructions transfer data between

processor registers and a memory stack.

2) Data Manipulation Instructions: The data manipulation instructions in a typical computer are usually

divided into three basic types:

✓ Arithmetic instructions

✓ Logical and bit manipulation instructions

✓ Shift instructions

Arithmetic instructions :The four basic arithmetic operations are addition, subtraction,

multiplication,and division. Most computers provide instructions for all four operations.Some small

computers have only addition and possibly subtraction instructions.

A list of typical arithmetic instructions is given in Table given below:

The increment instruction adds 1 to the value stored in a register or memory word.The decrement

instruction subtracts 1 from a value stored in a registeror memory word.The add, subtract, multiply, and

divide instructions may be available fordifferent types of data. The data type assumed ·to be in processor

registersduring the execution of these arithmetic operations is included in the definitionof the operation

code. An arithmetic instruction may specify fixed-point orfloating-point data, binary or decimal data,

single-precision or double-precision data.

The mnemonics for three add instructions that specifydifferent data types are shown below:

ADDI Add two binary integer numbers

ADDF Add two floating-point numbers

ADDD Add two decimal numbers in BCD

The instruction "add with carry" performs the addition on two operands plus the value of the carry

fromthe previous computation. Similarly, the "subtract with borrow" instructionsubtracts two words and

a borrow which may have resulted from a previoussubtract operation. The negate instruction forms the

2' s complement of anumber, effectively reversing the sign of an integer when represented in thesigned-

2's complement form.

Logical and Bit Manipulation Instructions:Logical instructions perform binary operations on strings

of bits stored in registers. They are useful for manipulating individual bits or a group of bits that represent

binary-coded information. The logical instructions consider each bit of the operand separately and

treat it as a Boolean variable. By proper application of the logical instructions, it is possible to change bit

values, to clear a group of bits, or to insert new bit values into operands stored in registers or memory

words.

Some logical and bit manipulation instructions are shown in the figure below:

The clear instruction causes the specified operand to be replaced by D's.The complement instruction

produces the 1's complement by inverting all thebits of the operand. The AND, OR, and XOR instructions

produce the corresponding logical operations on individual bits of the operands. Although theyperform

Boolean operations, when used in computer instructions, the logicalinstructions should be considered as

performing bit manipulation operations.There are three-bit manipulation operations possible: a selected

bit can becleared to 0, or can be set to 1, or can be complemented. The three logicalinstructions are

usually applied to do just that.

Shift Instructions: Shifts are operations in which the bits of a word are moved to the left or right. Shift

instructions may specify either logicalshifts, arithmetic shifts, or rotate-type operations. In either case the

shift maybe to the right or to the left.Table below lists four types of shift instructions:

The logical shift inserts 0to the end bit position. The end position is the leftmost bit for shift right and the

rightmost bit position for the shift left.

The arithmetic shift-right instruction must preserve the sign bit in the leftmost position. The sign bit is

shifted to the right together with the rest of the number, but the sign bit itself remains unchanged. This is

a shift-right operation with the end bit remaining the same. The arithmetic shift-left instruction inserts 0

to the end position and is identical to the logical shift-left instruction.

The rotate instructions produce a circular shift. Bits shifted out at one end of the word are not lost as in a

logical shift but are circulated back into the other end. The rotate through carry instruction treats a carry

bit as an extension of the register whose word is being rotated. Thus, a rotate-left through carry

instruction transfers the carry bit into the rightmost bit position of the register, transfers the leftmost bit

position into the carry, and at the same time, shifts the entire register to the left.

Program Control Instructions: Program control instructions provide decision-making capabilities and

change the path taken by the program when executed in the computer a program control type of

instruction, when executed, may change the address value in the program counter and cause the flow of

control to be altered. In other words, program control instructions specify conditions for altering the

content of the program counter.

Some program control instructions are listed in Table below:

Branch and jump instructions are used interchangeably to mean the same thing, but sometimes they are

used to denote different addressing modes. Branch instruction is written as BR ADR, where ADR is a

symbolic name for an address. Branch and jump instructions may be conditional or unconditional.

Anunconditional branch instruction causes a branch to the specified address without any conditions. The

conditional branch instruction specifies a conditionsuch as branch if positive or branch if zero. If the

condition is met, the programcounter is loaded with the branch address and the next instruction is

taken.from this address. If the condition is not met, the program counter is not changed and the next

instruction is taken from the next location in sequence.

The skip instruction does not need an address field and is therefore azero-address instruction. A

conditional skip instruction will skip the nextinstruction if the condition is met. If the condition is not

met, control proceeds with thenext instruction in sequence.

The call and return instructions are used in conjunction with subroutines.

The compare instruction performs a subtraction between two operands, but the result of the operation

isnot retained. However, certain status bit conditions are set as a result of theoperation. Similarly, the test

instruction performs the logical AND of twooperands and updates certain status bits without retaining

the result or changing the operands. (Note:The compare and test instructions do not change the program

sequence directly. They are listed in Table because of their application in setting conditions for

subsequent conditional branch instructions)

RISC vs CISC Architecture

RISC stands for Reduced Instruction set Computer and CISC stands for Complex Instruction Set

Computer.RISC and CISC are the two ideologies behind making the processor.

 13 They have register based operations. 13. Memory based operations.

CPU CONTROL UNIT DESIGN

• Hardwired CU :

In Hardwired CU, control signals are produced by hardware. There are three types of Hardwired

Control Units

1) STATE TABLE METHOD

2) DELAY ELEMENT METHOD

3) SEQUENCE COUNTER METHOD

STATE TABLE METHOD:

1) It is the most basic type of hardwired control unit.

2) Here the behaviour of the control unit is represented in the form of a table called the state table.

3) The rows represent the T-states and the columns indicate the instructions.

4) Each intersection indicates the control signal to be produced, in the corresponding T-state of

everyinstruction.

4) A circuit is then constructed based on every column of this table, for each instruction.

ADVANTAGE: It is the simplest method and is ideally suited for very small instruction sets.

DRAWBACK:As the number of instructions increase, the circuit becomes bigger and hence more

complicated. As a tabular approach is used, instead of a logical approach (flowchart), there are

duplications of manycircuit elements in various instructions.

 Delay Element Method:

1) Here the behaviour of the control unit is represented in the form of a flowchart.

2) Each step in the flowchart represents a control signal to be produced.

3) Once all steps of a particular instruction, are performed, the complete instruction gets executed.

4) Control signals perform Micro-Operations, which require one T-states each.

5) Hence between every two steps of the flowchart, there must be a delay element.

6) The delay must be exactly of one T-state. This delay is achieved by D Flip-Flops.

7) These D Flip-Flops are inserted between every two consecutive control signals.

8) Of all D Flip-Flops only one will be active at a time. So the method is also called “One Hot Method”.

9) In a multiple entry point, to combine two or more paths, we use an OR gate.

10)A decision box is replaced by a set of two complementing AND gates

11) A multiple entry point is substituted by an OR gate.

ADVANTAGE:

As the method has a logical approach, it can reduce the circuit complexity.This is done by re-utilizing

common elements between various instructions.

DRAWBACK:

As the no of instructions increase, the number of D Flip-Flops increase, so the cost increases.Moreover,

only one of those D Flip-Flops are actually active at a time.

SEQUENCE COUNTER METHOD:

1) This is the most popular form of hardwired control unit. The goal of this circuit is to provide triggers to

different parts of the circuit after gaps of 1-Tstate.

2) It follows the same logical approach of a flowchart, like the Delay element method, but does not use all

those unnecessary D Flip-Flops because at any point of time only one delay element is active and a

complex circuitry would involve many delay elements which is very inefficient. The D-Flip-flops are

replaced by trigger points which are activated after gaps of one T-state.

Following are the steps involved in designing a CU using Sequence Counter Method.

1) First a flowchart is made representing the behaviour of a control unit.

2) It is then converted into a circuit using the same principle of AND & OR gates.

3) We need a delay of 1 T-state (one clock cycle) between every two consecutive control signals.

4) That is achieved by the above circuit.

5) If there are “k” number of distinct steps producing control signals, we employ a “mod k” and “k”output

decoder.

6) The counter will start counting at the beginning of the instruction.

7) The “clock” input via an AND gate ensures each count will be generated after 1 T-state.

8)The count is given to the decoder which triggers the generation of “k” control signals, each aftera delay

of 1 T-state.

9)When the instruction ends, the counter is reset so that next time, it begins from the first count.

ADVANTAGE:

Avoids the use of too many D Flip-Flops.

GENERAL DRAWBACKS OF A HARDWIRED CONTROL UNIT

1) Since they are based on hardware, as the instruction set increases, the circuit becomes more and more

complex. For modern processors having hundreds of instructions, it is virtually impossible to create

Hardwired Control Units.

2) Such large circuits are very difficult to debug.

3) As the processor gets upgraded, the entire Control Unit has to be redesigned, due to the rigid nature of

hardware design.

Microprogrammed CU

WILKES’ DESIGN FOR A MICROPROGRAMMED CONTROL UNIT:

1) Microprogrammed Control Unit produces control signals by software, using micro-instructions

2) A program is a set of instructions.

3) An instruction requires a set of Micro-Operations.

4) Micro-Operations are performed by control signals.

5) Instead of generating these control signals by hardware, we use micro-instructions. This means every

instruction requires a set of micro-instructions This is called its micro-program.

6) Microprograms for all instructions are stored in a small memory called “Control Memory”. The

Control memory is present inside the processor.

7) Consider an Instruction that is fetched from the main memory into the Instruction Register (IR).

8) The processor uses its unique “opcode” to identify the address of the first micro-instruction. That

address is loaded into CMAR (Control Memory Address Register). CMAR passes the address to the

decoder.

9) The decoder identifies the corresponding micro-instruction from the Control Memory.

10) A micro-instruction has two fields: a control filed and an address field.

Control field: Indicates the control signals to be generated.

Address field: Indicates the address of the next micro-instruction.

11) This address is further loaded into CMAR to fetch the next micro-instruction.

12) For a conditional micro-instruction, there are two address fields.This is because, the address of the

next micro-instruction depends on the condition.The condition (true or false) is decided by the appropriate

control flag.

13) The control memory is usually implemented using FLASH ROM as it is writable yet non-volatile.

ADVANTAGES

1) The biggest advantage is flexibility.

2) Any change in the control unit can be performed by simply changing the micro-instruction.

3) This makes modifications and up gradation of the Control Unit very easy.

4) Moreover, software can be much easily debugged as compared to a large Hardwired Control Unit.

DRAWBACKS

1) Control memory has to be present inside the processor, increasing its size.

2) This also increases the cost of the processor.

3) The address field in every micro-instruction adds more space to the control memory. This can beeasily

avoided by proper micro-instruction sequencing.

TYPICAL MICROPROGRAMMED CONTROL UNIT

1) Microprogrammed Control Unit produces control signals by software, using micro-instructions.

2) A program is a set of instructions.

3) An instruction requires a set of Micro-Operations.

4) Micro-Operations are performed by control signals.

5) Here, these control signals are generated using micro-instructions.

6) This means every instruction requires a set of micro-instructions

7) This is called its micro-program.

8) Microprograms for all instructions are stored in a small memory called “Control Memory”.

9) The Control memory is present inside the processor.

10) Consider an Instruction that is fetched from the main memory into the Instruction Register (IR).

11) The processor uses its unique “opcode” to identify the address of the first micro-instruction.

12) That address is loaded into CMAR (Control Memory Address Register) also called μIR.

13) This address is decoded to identify the corresponding μ-instruction from the Control Memory.

14) There is a big improvement over Wilkes’ design, to reduce the size of micro-instructions.

15) Most micro-instructions will only have a Control field.

16) The Control field Indicates the control signals to be generated.

17) Most micro-instructions will not have an address field.

18) Instead, μPC will simply get incremented after every micro-instruction.

19) This is as long as the μ-program is executed sequentially.

20) If there is a branch μ-instruction only then there will be an address filed.

21) If the branch is unconditional, the branch address will be directly loaded into CMAR.

22) For Conditional branches, the Branch condition will check the appropriate flag.

23) This is done using a MUX which has all flag inputs.

24) If the condition is true, then the MUX will inform CMAR to load the branch address.

25) If the condition is false CMAR will simply get incremented.

26) The control memory is usually implemented using FLASH ROM as it is writable yet non-volatile.

ADVANTAGES

1) The biggest advantage is flexibility.

2) Any change in the control unit can be performed by simply changing the micro-instruction.

3) This makes modifications and up gradation of the Control Unit very easy.

4) Moreover, software can be much easily debugged as compared to a large Hardwired Control Unit.

5) Since most micro-instructions are executed sequentially, they don’t need for an address field.

6) This significantly reduces the size of micro-instructions, and hence the Control Memory.

DRAWBACKS

1) Control memory has to be present inside the processor, increasing its size.

2) This also increases the cost of the processor.

Memory system design: Semiconductor memory technologies, memory organization.

Memory organization: Memory interleaving, concept of hierarchical memory organization, Cache
memory, mapping functions, Replacement algorithms, write policies, Virtual Memory Management

UNIT-3

Memory System Design

Semiconductor Memory Technologies:

Semiconductor random-access memories (RAMs) are available in a wide range of speeds.

Their cycle times range from 100 ns to less than 10 ns. Semiconductor memory is used in any

electronics assembly that uses computer processing technology. The use of semiconductor memory has

grown, and the size of these memory cards has increased as the need for larger and larger amounts of

storage is needed.

There are two main types or categories that can be used for semiconductor technology.

RAM - Random Access Memory: As the names suggest, the RAM or random access memory is a

form of semiconductor memory technology that is used for reading and writing data in any order - in

other words as it is required by the processor. It is used for such applications as the computer or

processor memory where variables and other stored and are required on a random basis. Data is stored

and read many times to and from this type of memory.

ROM - Read Only Memory: A ROM is a form of semiconductor memory technology used where the

data is written once and then not changed. In view of this it is used where data needs to be stored

permanently, even when the power is removed - many memory technologies lose the data once the

power is removed. As a result, this type of semiconductor memory technology is widely used for storing

programs and data that must survive when a computer or processor is powered down. For example the

BIOS of a computer will be stored in ROM. As the name implies, data cannot be easily written to ROM.

Depending on the technology used in the ROM, writing the data into the ROM initially may require

special hardware. Although it is often possible to change the data, this gain requires special hardware to

erase the data ready for new data to be written in.

The different memory types or memory technologies are detailed below:

DRAM: Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each bit

of data, and the level of charge on each capacitor determines whether that bit is a logical 1 or 0.

However these capacitors do not hold their charge indefinitely, and therefore the data needs to be

refreshed periodically. As a result of this dynamic refreshing it gains its name of being a dynamic RAM.

DRAM is the form of semiconductor memory that is often used in equipment including personal

computers and workstations where it forms the main RAM for the computer.

EEPROM: This is an Electrically Erasable Programmable Read Only Memory. Data can be written to

it and it can be erased using an electrical voltage. This is typically applied to an erase pin on the chip.

Like other types of PROM, EEPROM retains the contents of the memory even when the power is turned

off. Also like other types of ROM, EEPROM is not as fast as RAM.

EPROM: This is an Erasable Programmable Read Only Memory. This form of semiconductor

memory can be programmed and then erased at a later time. This is normally achieved by exposing the

silicon to ultraviolet light. To enable this to happen there is a circular window in the package of the

EPROM to enable the light to reach the silicon of the chip. When the PROM is in use, this window is

normally covered by a label, especially when the data may need to be preserved for an extended period.

The PROM stores its data as a charge on a capacitor. There is a charge storage capacitor for each cell

and this can be read repeatedly as required. However it is found that after many years the charge may

leak away and the data may be lost. Nevertheless, this type of semiconductor memory used to be widely

used in applications where a form of ROM was required, but where the data needed to be changed

periodically, as in a development environment, or where quantities were low.

FLASH MEMORY: Flash memory may be considered as a development of EEPROM technology.

Data can be written to it and it can be erased, although only in blocks, but data can be read on an

individual cell basis. To erase and re-programme areas of the chip, programming voltages at levels that

are available within electronic equipment are used. It is also non-volatile, and this makes it particularly

useful. As a result Flash memory is widely used in many applications including memory cards for digital

cameras, mobile phones, computer memory sticks and many other applications.

F-RAM: Ferroelectric RAM is a random-access memory technology that has many similarities to the

standard DRAM technology. The major difference is that it incorporates a ferroelectric layer instead of

the more usual dielectric layer and this provides its non-volatile capability. As it offers a non-volatile

capability, F-RAM is a direct competitor to Flash.

MRAM: This is Magneto-resistive RAM, or Magnetic RAM. It is a non-volatile RAM memory

technology that uses magnetic charges to store data instead of electric charges. Unlike technologies

including DRAM, which require a constant flow of electricity to maintain the integrity of the data,

MRAM retains data even when the power is removed. An additional advantage is that it only requires

low power for active operation. As a result this technology could become a major player in the

electronics industry now that production processes have been developed to enable it to be produced.

P-RAM / PCM: This type of semiconductor memory is known as Phase change Random Access

Memory, P-RAM or just Phase Change memory, PCM. It is based around a phenomenon where a form

of chalcogenide glass changes is state or phase between an amorphous state (high resistance) and a

polycrystalline state (low resistance). It is possible to detect the state of an individual cell and hence use

this for data storage. Currently this type of memory has not been widely commercialized, but it is

expected to be a competitor for flash memory.

PROM: This stands for Programmable Read Only Memory. It is a semiconductor memory which can

only have data written to it once - the data written to it is permanent. These memories are bought in a

blank format and they are programmed using a special PROM programmer. Typically a PROM will

consist of an array of fuseable links some of which are "blown" during the programming process to

provide the required data pattern.

SDRAM: Synchronous DRAM. This form of semiconductor memory can run at faster speeds than

conventional DRAM. It is synchronised to the clock of the processor and is capable of keeping two sets

of memory addresses open simultaneously. By transferring data alternately from one set of addresses,

and then the other, SDRAM cuts down on the delays associated with non-synchronous RAM, which

must close one address bank before opening the next.

SRAM: Static Random Access Memory. This form of semiconductor memory gains its name from the

fact that, unlike DRAM, the data does not need to be refreshed dynamically. It is able to support faster

read and write times than DRAM (typically 10 ns against 60 ns for DRAM), and in addition its cycle

time is much shorter because it does not need to pause between accesses. However it consumes more

power, is less dense and more expensive than DRAM. As a result of this it is normally used for caches,

while DRAM is used as the main semiconductor memory technology.

MEMORY ORGANIZATION

Memory Interleaving:

Pipeline and vector processors often require simultaneous access to memory from two or more

sources. An instruction pipeline may require the fetching of an instruction and an operand at the same

time from two different segments.

Similarly, an arithmetic pipeline usually requires two or more operands to enter the pipeline at

the same time. Instead of using two memory buses for simultaneous access, the memory can be

partitioned into a number of modules connected to a common memory address and data buses. A

memory module is a memory array together with its own address and data registers. Figure 9-13 shows a

memory unit with four modules. Each memory array has its own address register AR and data register

DR.

The address registers receive information from a common address bus and the data registers

communicate with a bidirectional data bus. The two least significant bits of the address can be used to

distinguish between the four modules. The modular system permits one module to initiate a memory

access while other modules are in the process of reading or writing a word and each module can honor a

memory request independent of the state of the other modules.

The advantage of a modular memory is that it allows the use of a technique called interleaving.

In an interleaved memory, different sets of addresses are assigned to different memory modules. For

example, in a two-module memory system, the even addresses may be in one module and the odd

addresses in the other.

Concept of Hierarchical Memory Organization

This Memory Hierarchy Design is divided into 2 main types:

External Memory or Secondary Memory

Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage devices which
are accessible by the processor via I/O Module.

Internal Memory or Primary Memory

Comprising of Main Memory, Cache Memory & CPU registers. This is directly accessible by the

processor.

Characteristics of Memory Hierarchy

Capacity:

It is the global volume of information the memory can store. As we move from top to bottom in

the Hierarchy, the capacity increases.

Access Time:

It is the time interval between the read/write request and the availability of the data. As we move
from top to bottom in the Hierarchy, the access time increases.

Performance:

Earlier when the computer system was designed without Memory Hierarchy design, the speed

gap increases between the CPU registers and Main Memory due to large difference in access time. This

results in lower performance of the system and thus, enhancement was required. This enhancement was

made in the form of Memory Hierarchy Design because of which the performance of the system

increases. One of the most significant ways to increase system performance is minimizing how far down

the memory hierarchy one has to go to manipulate data.

Cost per bit:

As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory
is costlier than External Memory.

Cache Memories:

The cache is a small and very fast memory, interposed between the processor and the main

memory. Its purpose is to make the main memory appear to the processor to be much faster than it

actually is. The effectiveness of this approach is based on a property of computer programs called

locality of reference.

Analysis of programs shows that most of their execution time is spent in routines in which many

instructions are executed repeatedly. These instructions may constitute a simple loop, nested loops, or a

few procedures that repeatedly call each other.

The cache memory can store a reasonable number of blocks at any given time, but this number is

small compared to the total number of blocks in the main memory. The correspondence between the

main memory blocks and those in the cache is specified by a mapping function.

When the cache is full and a memory word (instruction or data) that is not in the cache is

referenced, the cache control hardware must decide which block should be removed to create space for

the new block that contains the referenced word. The collection of rules for making this decision

constitutes the cache’s replacement algorithm.

Cache Hits

The processor does not need to know explicitly about the existence of the cache. It simply issues

Read andWrite requests using addresses that refer to locations in the memory. The cache control

circuitry determines whether the requested word currently exists in the cache.
If it does, the Read orWrite operation is performed on the appropriate cache location. In this case, a read

or write hit is said to have occurred.

Cache Misses

A Read operation for a word that is not in the cache constitutes a Read miss. It causes the block

of words containing the requested word to be copied from the main memory into the cache.

Cache Mapping:

There are three different types of mapping used for the purpose of cache memory which are as

follows: Direct mapping, Associative mapping, and Set-Associative mapping. These are explained as

following below.

Direct mapping

The simplest way to determine cache locations in which to store memory blocks is the direct-

mapping technique. In this technique, block j of the main memory maps onto block j modulo 128 of the

cache, as depicted in Figure 8.16. Thus, whenever one of the main memory blocks 0, 128, 256, . . . is

loaded into the cache, it is stored in cache block 0. Blocks 1, 129, 257, . . . are stored in cache block 1,

and so on. Since more than one memory block is mapped onto a given cache block position, contention

may arise for that position even when the cache is not full.

For example, instructions of a program may start in block 1 and continue in block 129, possibly

after a branch. As this program is executed, both of these blocks must be transferred to the block-1

position in the cache. Contention is resolved by allowing the new block to overwrite the currently

resident block.

With direct mapping, the replacement algorithm is trivial. Placement of a block in the cache is

determined by its memory address. The memory address can be divided into three fields, as shown in

Figure 8.16. The low-order 4 bits select one of 16 words in a block.

When a new block enters the cache, the 7-bit cache block field determines the cache position in

which this block must be stored. If they match, then the desired word is in that block of the cache. If

there is no match, then the block containing the required word must first be read from the main memory

and loaded into the cache.

The direct-mapping technique is easy to implement, but it is not very flexible.

Associative Mapping

In Associative mapping method, in which a main memory block can be placed into any cache

block position. In this case, 12 tag bits are required to identify a memory block when it is resident in the

cache. The tag bits of an address received from the processor are compared to the tag bits of each block

of the cache to see if the desired block is present. This is called the associative-mapping technique.

It gives complete freedom in choosing the cache location in which to place the memory block,

resulting in a more efficient use of the space in the cache. When a new block is brought into the cache, it

replaces (ejects) an existing block only if the cache is full. In this case, we need an algorithm to select

the block to be replaced.

To avoid a long delay, the tags must be searched in parallel. A search of this kind is called an

associative search.

Set-Associative Mapping

Another approach is to use a combination of the direct- and associative-mapping techniques.

The blocks of the cache are grouped into sets, and the mapping allows a block of the main memory to

reside in any block of a specific set. Hence, the contention problem of the direct method is eased by

having a few choices for block placement.

At the same time, the hardware cost is reduced by decreasing the size of the associative search.

An example of this set-associative-mapping technique is shown in Figure 8.18 for a cache with two

blocks per set. In this case, memory blocks 0, 64, 128, . . . , 4032 map into cache set 0, and they can

occupy either of the two block positions within this set.

Having 64 sets means that the 6-bit set field of the address determines which set of the cache

might contain the desired block. The tag field of the address must then be associatively compared to the

tags of the two blocks of the set to check if the desired block is present. This two-way associative

search is simple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements

of a particular computer. For the main memory and cache sizes in Figure 8.18, four blocks per set can be

accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field, and so on. The extreme

condition of 128 blocks per set requires no set bits and corresponds to the fully-associative technique,

with 12 tag bits. The other extreme of one block per set is the direct-mapping.

Replacement Algorithms

In a direct-mapped cache, the position of each block is predetermined by its address;
hence, the replacement strategy is trivial. In associative and set-associative caches there exists

some flexibility.

When a new block is to be brought into the cache and all the positions that it may occupy are full,

the cache controller must decide which of the old blocks to overwrite.

This is an important issue, because the decision can be a strong determining factor in

system performance. In general, the objective is to keep blocks in the cache that are likely to be

referenced in the near future. But, it is not easy to determine which blocks are about to be

referenced.

The property of locality of reference in programs gives a clue to a reasonable strategy.

Because program execution usually stays in localized areas for reasonable periods of time, there is a

high probability that the blocks that have been referenced recently will be referenced again soon.

Therefore, when a block is to be overwritten, it is sensible to overwrite the one that has gone the

longest time without being referenced. This block is called the least recently used (LRU) block, and

the technique is called the LRU replacement algorithm.

The LRU algorithm has been used extensively. Although it performs well for many access

patterns, it can lead to poor performance in some cases.

Write Policies

The write operation is proceeding in 2 ways.

• Write-through protocol

• Write-back protocol

Write-through protocol:

Here the cache location and the main memory locations are updated simultaneously.

Write-back protocol:

• This technique is to update only the cache location and to mark it
as with associated flag bit called dirty/modified bit.

• The word in the main memory will be updated later, when the block
containing this marked word is to be removed from the cache to make room
for a new block.

• To overcome the read miss Load –through / Early restart protocol is used.

Virtual Memory Management /Paging:

Fig: Virtual Memory Organization

Fig: Virtual Memory Address Translation

Internal Memory Organization:

Memory cells are usually organized in the form of an array, in which each cell is capable of storing

one bit of information. Apossible organization is illustrated in Figure below:

Fig: Organization of bit cells in a memory chip.

Each row of cells constitutes a memory word, and all cells of a row are connected to a common line

referred to as the word line, which is driven by the address decoder on the chip.The cells in each

column are connected to a Sense/Write circuit by two bit lines, and the Sense/Writecircuits are

connected to the data input/output lines of the chip.During a Read operation,these circuits sense, or

read, the information stored in the cells selected by a word line andplace this information on the

output data lines. During a Write operation, the Sense/Write circuits receive input data and store

them in the cells of the selected word.Above figureis an example of a very small memory circuit

consisting of 16 words of 8 bitseach. This is referred to as a 16 × 8 organization. The data input and the

data output of eachSense/Write circuit are connected to a single bidirectional data line that can be

connectedto the data lines of a computer.Two control lines, R/W and CS, are provided. The

R/W(Read/Write) input specifies the required operation, and the CS (Chip Select) input selectsa given

chip in a multichip memory system.The above memory circuit stores 128 bits and requires 14

external connections for address, data, and control lines. It also needs two lines for power supply and

groundconnections.

 Consider now a slightly larger memory circuit, one that has 1K (1024) memorycells. This circuit can be

organized as a 128 × 8 memory, requiring a total of 19 external connections. Alternatively, the same

number of cells can be organized into a 1K×1 format.In this case, a 10-bit address is needed, but there is

only one data line, resulting in 15 externalconnections. Figure below shows such an organization. The

required 10-bit address is dividedinto two groups of 5 bits each to form the row and column addresses for

the cell array. Arow address selects a row of 32 cells, all of which are accessed in parallel. But, only

oneof these cells is connected to the external data line, based on the column address.For example, a

1Giga-bitchip may have a 256M × 4 organization, in which case a 28-bit address is needed and 4bits are

transferred to or from the chip.

Fig: Organization of a 1K × 1 memory chip.

Memory Hierarchy

• The total memory capacity of a computer can be visualized as being a hierarchy of components.

The memory hierarchy system consists of all storage devices employed in a computer system

from the slow but high-capacity secondary memory to a relatively faster main memory, to an even

smaller and faster cache memory accessible to the high-speed processing logic.

• The purpose of any memory device is to store programs and data. Several types of memory

devices are used in the computer forming a Memory Hierarchy. Each plays a specific role

contributing to the speed, cost effectiveness, portability etc.

Main Memory

The memory unit that communicates directly with the CPU is called the main memory.It comprises of

RAM and ROM, both are Semi-Conductor memories. (chip memories). ROM is non-volatile.It is used is

storing permanent information like the BIOS program.It is typically of 2 MB - 4 MB in size.RAM is

writable and hence is used for day-to-day operations.Every file that we access from secondary memory,

is first loaded into RAM.The main memory occupies

a central position by being able to communicate directly with the CPU andwith auxiliary memory devices

through an UO processor. To provide large amount of working space RAM is typically 4 GB - 8 GB.

Secondary Memory (Auxiliary Memory):

Devices that provide backup storage arecalled auxiliary memory. The most common auxiliary memory

devices used incomputer systems are magnetic disks and tapes. They are used for

storingsystemprograms, large data files, and other backup information. Only programs and data

currently needed by the processor reside in main memory.When programs notresiding in main memory

are needed by the CPU, they are brought in fromauxiliary memory.The main purpose of Secondary

Memory is to increase the storage capacity, at low cost.Its biggest component is the Hard Disk.It is

writeable as well as non-volatile. Typical size of a HD is 1 TB.Disk memories are much slower than chip

memories but are also much cheaper.

Cache Memory:

The cache memory is employed in computersystems to compensate for the speed differential between

main memory accesstime and processor logic. CPU logic is usually faster than main memory accesstime,

with the result that processing speed is limited primarily by the speedof main memory. A technique used

to compensate for the mismatch in operating speeds is to employ an extremely fast, small cache between

the CPU andmain memory whose access time Is dose to processor logic dock cycle time.It is the fastest

form of memory as it uses SRAM (Static RAM).The Main Memory uses DRAM (Dynamic

RAM).SRAM uses flip-flops and hence is much faster than DRAM which uses capacitors.But SRAM is

also very expensive as compared to DRAM.Hence only the current portion of the file we need to access

is copied from Main Memory (DRAM)to Cache memory (SRAM), to be directly accessed by the

processor.This gives maximum performance and yet keeps the cost low.While the VO processor manages

data transfers between auxiliary memoryand main memory, the cache organization is concerned with the

transferof information between main memory and CPU.Typical size of Cache is around 2 MB – 8MB. If

code and data are in the same cache then it is unified cache else its called split cache.Depending upon the

location of cache, it is of three types: L1, L2 and L3.L1 cache is present inside the processor and is a split

cache typically 4-8 KB.L2 is present on the same die as the processor and is a unified cache typically 1

MB.L3 is present outside the processor. It is also unified and is typically of 2-8 MB.

Fig: Memory Hierarchy in a computer system

The reason for having twoor three levels of memory hierarchy is economics. As the storage capacity

ofthe memory increases, the cost per bit for storing binary information decreasesand the access time of

the memory becomes longer. The auxiliary memory hasa large storage capacity, is relatively inexpensive,

but has low access speedcompared to main memory. The cache memory is very small, relatively

expensive,and has very high access speed. Thus as the memory access speedincreases, so does its relative

cost. The overall goal of using a memory hierarchyis to obtain the highest-possible average access speed

while minimizing thetotal cost of the entire memory system.

Memory Interleaving

Pipeline and vector processors often require simultaneous access to memory from two or more sources.

An instruction pipeline may require the fetching of an instruction and an operand at the same time from

two different segments. Similarly, an arithmetic pipeline usually requires two or more operands to enter

the pipeline at the same time. Instead of using two memory buses for simultaneous access, the memory

can be partitioned into a number of modules connected to a common memory address and data buses. A

memory module is a memory array together with its own address and data registers. Figure below shows

a memory unit with four modules.

Fig: Multiple module memory organization.

Each memory array has its ownaddress register AR and data register DR . The address registers receive

informationfrom a common address bus and the data registers communicate witha bidirectional data bus.

The two least significant bits of the address can be usedto distinguish between the four modules. The

modular system permits onemodule to initiate a memory access while other modules are in the process

ofreading or writing a word and each module can honor a memory requestindependent of the state of the

other modules.The advantage of a modular memory is that it allows the use of a techniquecalled

interleaving. In an interleaved memory, different sets of addressesare assigned to different memory

modules. For example, in a two-modulememory system, the even addresses may be in one module and

the oddaddresses in the other. When the number of modules is a power of 2, the leastsignificant bits of

the address select a memory module and the remaining bitsdesignate the specific location to be accessed

within the selected module.A modular memory is useful in systems with pipeline and vector

processing.A vector processor that uses an n-way interleaved memory can fetch noperands from n

different modules. By staggering the memory access, theeffective memory cycle time can be reduced by

a factor close to the number ofmodules. A CPU with instruction pipeline can take advantage of

multiplememory modules so that each segment in the pipeline can access memoryindependent of

memory access from other segments.

Cache Memory:

The cache is a small and very fast memory, interposed between the processor and the mainmemory. Its

purpose is to make the main memory appear to the processor to be muchfaster than it actually is.

Fig: Use of Cache Memory

operation of a cache memory is very simple. The memory control circuitry is designed to take advantage

of the property of locality of reference. Temporal locality suggests that whenever an information item,

instruction or data, is first needed, this item should be brought into the cache, because it is likely to be

needed again soon. Spatial locality suggests that instead of fetching just one item from the main memory

to the cache, it is useful to fetch several items that are located at adjacent addresses as well. The

termcache block refers to a set of contiguous address locations of some size. Another term that

is often used to refer to a cache block is a cache line.

When the processor issues a Read request, the contents of a block of memory words containing the

location specified are transferred into the cache. Subsequently, when the program references any of the

locations in this block, the desired contents are read directly from the cache. Usually, the cache memory

can store a reasonable number of blocks at any given time, but this number is small compared to the total

number of blocks in the main memory. The correspondence between the main memory blocks and those

in the cache is specified by a mapping function. When the cache is full and a memory word (instruction

or data) that is not in the cache is referenced, the cache control hardware must decide which block should

be removed to create space for the new block that contains the referenced word. The collection of rules

for making this decision constitutes the cache’s replacement algorithm.

Cache Hits:

The processor does not need to know explicitly about the existence of the cache. It simply issues Read

andWrite requests using addresses that refer to locations in the memory. The cache control circuitry

determines whether the requested word currently exists in the cache. If it does, the Read or Write

operation is performed on the appropriate cache location. In this case, a read or write hit is said to have

occurred. The main memory is not involved when there is a cache hit in a Read operation. For a Write

operation, the system can proceed in one of two ways. In the first technique, called the write-through

protocol, both the cache location and the main memory location are updated. The second technique is to

update only the cache location and to mark the block containing it with an associated flag bit, often called

the dirty or modified bit. The main memory location of the word is updated later, when the block

containing this marked word is removed from the cache to make room fora new block. This technique is

known as the write-back, or copy-back, protocol.

The write-through protocol is simpler than the write-back protocol, but it results in unnecessary Write

operations in the main memory when a given cache word is updated several times during its cache

residency. The write-back protocol also involves unnecessary Write operations, because all words of the

block are eventually written back, even if only a single word has been changed while the block was in the

cache. The write-back protocol is used most often, to take advantage of the high speed with which data

blocks can be transferred to memory chips.

Cache Misses

A Read operation for a word that is not in the cache constitutes a Read miss. It causes the block of words

containing the requested word to be copied from the main memory into the cache. After the entire block

is loaded into the cache, the particular word requested is forwarded to the processor. Alternatively, this

word may be sent to the processor as soon as it is read from the main memory. The latter approach,

which is called load-through, or early restart, reduces the processor’s waiting time somewhat, at the

expense of more complex circuitry.

When a Write miss occurs in a computer that uses the write-through protocol, the information is written

directly into the main memory. For the write-back protocol, the block containing the addressed word is

first brought into the cache, and then the desired word in the cache is overwritten with the new

information.

UNIT-4

Peripheral Devices and Their Characteristics

I/o Device Interface:

Introduction: Input-output interface provides a method for transferring information between

internal storage and external I/0 devices. Peripherals(I/O Devices) connected to a computer

need special communication links for interfacing them with the central processing unit. The

purpose of the communication link is to resolve the differences that exist between the central

computer and each peripheral.

The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their manner of operation

is different from the operation of the CPU and memory, which are electronic devices.

Therefore, a conversion of signal values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, and

consequently, a synchronization mechanism may be needed.

3. Data codes and formats in peripherals differ from the word format in the CPU and memory.

4. The operating modes of peripherals are different from each other and each must be

controlled so as not to disturb the operation of other peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware components between

the CPU and peripherals to supervise and synchronize all input and output transfers. These

components are called interface units because they interface between the processor bus and

the peripheral device. In addition, each device may have its own controller that supervises the

operations of the particular mechanism in the peripheral.

l/O Bus and Interface Modules:

A typical communication link between the processor and several peripherals

is shown below:

Fig: Connection of I/O bus to input-output devices.

The I/0 bus consists of data lines, address lines, and control lines. Each peripheral device has

associated with it an interface unit.

Each interface decodes the address and control received from the I/O bus, interprets them for

the peripheral, and provides signals for the peripheral controller. It also synchronizes the data

flow and supervises the transfer between peripheral and processor.

Each peripheral has its own controller that operates the particular electromechanical device.

For example, the printer controller controls the paper motion, the print timing, and the

selection of printing characters. A controller may be housed separately or may be physically

integrated with the peripheral.

The I/O bus from the processor is attached to all peripheral interfaces. To communicate with

a particular device, the processor places a device address on the address lines. Each interface

attached to the I/0 bus contains an address decoder that monitors the address lines. When

the interface detects its own address, it activates the path between the bus lines and the device

that it controls. All peripherals whose address does not correspond to the address in the bus

are disabled by their interface.

At the same time that the address is made available in the address lines, the processor provides

a function code in the control lines. The interface selected responds to the function code and

proceeds to execute it. The function code is referred to as an I/O command and is in essence

an instruction that is executed in the interface and its attached peripheral unit. There are four

types of commands that an interface may receive. They are classified as control, status, data

output, and data input.

• A control command is issued to activate the peripheral and to inform it what to do.

• A status command is used to test various status conditions in the interface and the

peripheral. For Example, the computer may wish to check the status of the peripheral

before a transfer is initiated.

• A data output command causes the interface to respond by transferring data from the

bus into one of its registers.

• The data input command is the opposite of the data output. In this case the interface

receives an item of data from the peripheral and places it in its buffer register. The

processor checks if data are available by means of a status command and then issues a

data input command. The interface places the data on the data lines, where they are

accepted by the processor.

There are three ways that computer buses can be used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O. (This method uses a separate

I/O Processor alongside CPU to provide an independent pathway for the transfer of information

between external devices and internal memory.)

2. Use one common bus for both memory and I/O but have separate control lines for each.

3. Use one common bus for memory and I/O with common control lines.

Isolated I/O: Many computers use one common bus to transfer information between memory

or I/0 and the CPU. The distinction between a memory transfer and I/0 transfer is made through

separate read and write lines.

The CPU specifies whether the address on the address lines is for a memory word or

for an interface register by enabling one of two possible read or write lines. The I/0 read and

I/0 write control lines are enabled during an I/0 transfer. The memory read and memory

write control lines are enabled during a memory transfer. This configuration isolates all I/0

interface addresses from the addresses assigned to memory and is referred to as the isolated I/0

method for assigning addresses in a common bus. In the isolated I/0 configuration, the CPU

has distinct input and output instructions, and each of these instructions is associated with the

address of an interface register. When the CPU fetches and decodes the operation code of an

input or output instruction, it places the address associated with the instruction into the common

address lines. At the same time, it enables the I/0 read (for input) or I/0 write (for output) control

line. This informs the external components that are attached to the common bus that the address

in the address lines is for an interface register and not for a memory word.

Memory-mapped I/O: Memory mapped I/O uses the same address space for both memory

and I/O. This is the case in computers that employ only one set of read and write signals and

do not distinguish between memory and I/O addresses. This configuration is referred to as

memory-mapped I/O. In a memory-mapped l/O organization there are no specific input or

output instructions. The CPU can manipulate l/O data residing in interface registers with

the same instructions that are used to manipulate memory words. Each interface is organized

as a set of registers that respond to read and write requests in the normal address space.

Computers with memory-mapped l/O can use memory-type instructions to access l/0 data. It

allows the computer to use the same instructions for either input-output transfers or for memory

transfers. The advantage is that the load and store instructions used for reading and writing

from memory can be used to input and output data from l/O registers. In a typical computer,

there are more memory-reference instructions than l/O instructions. With memory-mapped l/O

all instructions that refer to memory are also available for l/O.

DATA TRANSFER MODES:

The transfer of data between two units may be done in parallel or serial. In parallel data

transmission, each bit of the message has its own path and the total message is transmitted at

the same time. This means that an n-bit message must be transmitted through n separate

conductor paths. In serial data transmission, each bit in the message is sent in sequence one at

a time. This method requires the use of one pair of conductors or one conductor and a

common ground. Parallel transmission is faster but requires many wires. It is used for short

distances and where speed is important. Serial transmission is slower but is less expensive

since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous.

Synchronous Data Transfer: In synchronous transmission, the two units (Sending Unit and

Receiving unit) share a common clock frequency and bits are transmitted continuously at the

rate dictated by the clock pulses. In long distant serial transmission, each unit is driven by a

separate clock of the same frequency. Synchronization signals are transmitted periodically

between the two units to keep their clocks in step with each other.

In asynchronous transmission, binary information is sent only when it is available and the line

remains idle when there is no information to be transmitted. This is in contrast to synchronous

transmission, where bits must be transmitted continuously to keep the clock frequency in both

units synchronized with each other.

Eg:Any two units of a digital system are designed independently, such as CPU and I/O

interface. If the registers in the I/O interface share a common clock with CPU registers, then

transfer between the two units is said to be synchronous.

Asynchronous Serial Transfer: A serial asynchronous data transmission technique used in

many interactive terminals employs special bits that are inserted at both ends of the character

code. With this technique, each character consists of three parts: a start bit, the character bits,

and stop bits. The convention is that the transmitter rests at the 1-state when no characters are

transmitted. The first bit, called the start bit, is always a 0 and is used to indicate the beginning

of a character. The last bit called the stop bit is always a 1.

An example of this format is shown below:

A transmitted character can be detected by the receiver from knowledge of the transmission

rules:

1 . When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit, which is always 0.

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected when the line returns

to the 1-state for at least one bit time.

Asynchronous way of data transfer can be achieved using two methods:

1) Strobe control

2) Handshaking

Strobe Control Method: The Strobe Control method of asynchronous data transfer employs

a single control line to time each transfer. This control line is also known as a strobe, and it

may be achieved either by source or destination, depending on which initiate the transfer.

Source initiated strobe: In the below block diagram, strobe is initiated by source, and as

shown in the timing diagram, the source unit first places the data on the data bus.

After a brief delay, the source activates a strobe pulse. The information on the data bus and

strobe control signal remains in the active state for a sufficient time to allow the destination

unit to receive the data. The destination unit uses a falling edge of strobe control to transfer

the contents of a data bus to one of its internal registers. The source removes the data from

the data bus after it disables its strobe pulse. Thus, new valid data will be available only after

the strobe is enabled again.

Example: The strobe may be a memory-write control signal from the CPU to a memory unit.

Destination initiated strobe: In the below block diagram, the strobe initiated by destination,

and in the timing diagram, the destination unit first activates the strobe pulse, informing the

source to provide the data.

The falling edge of the strobe pulse can use again to trigger a destination register. The

destination unit then disables the strobe. Finally, and source removes the data from the data

bus after a determined time interval.

Example: the strobe may be a memory read control from the memory unit to CPU.

Handshaking Method: The strobe method has the disadvantage that the source unit that

initiates the transfer has no way of knowing whether the destination has received the data that

was placed in the bus. Similarly, a destination unit that initiates the transfer has no way of

knowing whether the source unit has placed data on the bus.

So this problem is solved by the handshaking method. The handshaking method introduces a

second control signal line.

In this method, one control line is in the same direction as the data flow in the bus from the

source to the destination. The source unit uses it to inform the destination unit whether there

are valid data in the bus.

The other control line is in the other direction from the destination to the source. This is because

the destination unit uses it to inform the source whether it can accept data. And in it also, the

sequence of control depends on the unit that initiates the transfer. So it means the sequence of

control depends on whether the transfer is initiated by source and destination.

Source initiated handshaking: In the below block diagram, two handshaking lines are "data

valid", which is generated by the source unit, and "data accepted", generated by the destination

unit.

The timing diagram shows the timing relationship of the exchange of signals between the two

units. The source initiates a transfer by placing data on the bus and enabling its data valid

signal. The destination unit then activates the data accepted signal after it accepts the data from

the bus.

The source unit then disables its valid data signal, which invalidates the data on the bus. After

this, the destination unit disables its data accepted signal, and the system goes into its initial

state. The source unit does not send the next data item until after the destination unit shows

readiness to accept new data by disabling the data accepted signal. This sequence of events

described in its sequence diagram, which shows the above sequence in which the system is

present at any given time.

Destination initiated handshaking: In the below block diagram, the two handshaking lines

are "data valid", generated by the source unit, and "ready for data" generated by the

destination unit.

I/O Transfers:

Binary information received from an external device is usually stored in memory for later

processing. Information transferred from the central computer into an external device

originates in the memory unit. The CPU merely executes the I/0 instructions and may accept

the data temporarily, but the ultimate source or destination is the memory unit. Data transfer

between the central computer and I/0 devices may be handled in a variety of modes. Some

modes use the CPU as an intermediate path; others transfer the data directly to and from the

memory unit. Data transfer to and from peripherals may be handled in one of three possible

modes:

1) Program Controlled I/O

2) Interrupt-initiated I/0

3) Direct memory access (DMA)

1. Program Controlled I/O: Programmed I/0 operations are the result of I/0 instructions

written in the computer program. CPU executes a program that transfers data between

I/O device and memory. Each data item transfer is initiated by an instruction in the

program. Usually, the transfer is to and from a CPU register and peripheral. Other

instructions are needed to transfer the data to and from CPU and memory.

Transferring data under program control requires constant monitoring of the peripheral

by the CPU. Once a data transfer is initiated, the CPU is required to monitor the

interface to see when a transfer can again be made. In the programmed I/0 method, the

CPU stays in a program loop until the I/0 unit indicates that it is ready for data transfer.

This is a time-consuming process since it keeps the processor busy needlessly.

Example of Programmed I/0:

In the programmed I/0 method, the I/0 device does not have direct access to memory. A transfer

from an I/0 device to memory requires the execution of several instructions by the CPU,

including an input instruction to transfer the data from the device to the CPU and a store

instruction to transfer the data from the CPU to memory. Other instructions may be needed to

verify that the data are available from the device and to count the numbers of words transferred.

An example of data transfer from an I/O device through an interface into the CPU is shown in

Fig below:

The device transfers bytes of data one at a time as they are available. When a byte of data is

available, the device places it in the I/O bus and enables its data valid line. The interface accepts

the byte into its data register and enables the data accepted line. The interface sets a bit in the

status register that we will refer to as an F or "flag" bit. The device can now disable the data

valid line, but it will not transfer another byte until the data accepted line is disabled by the

interface.

A program is written for the computer to check the flag in the status register to determine if a

byte has been placed in the data register by the VO device. This is done by reading the status

register into a CPU register and checking the value of the flag bit. If the flag is equal to 1, the

CPU reads the data from the data register. The flag bit is then cleared to 0 by either the CPU

or the interface, depending on how the interface circuits are designed. Once the flag is cleared,

the interface disables the data accepted line and the device can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown in Fig below. It is

assumed that the device is sending a sequence of bytes that must be stored in memory. The

transfer of each byte requires three instructions:

1 Read the status register.

2. Check the status of the flag bit and branch to step 1 if not set or to step 3 if set.

3. Read the data register.

Each byte is read into a CPU register and then transferred to memory with a store instruction.

A common I/O programming task is to transfer a block of words from an I/O device and store

them in a memory buffer. The programmed VO method is particularly useful in small low-

speed computers or in systems that are dedicated to monitor a device continuously.

2) INTERRUPT DRIVEN I/O:

1) In interrupt driven I/O, the transfer is not initiated by the processor.

2) Instead, an I/O device which wants to perform a data transfer with the processor,

must give an interrupt to the processor.

3) An interrupt is a condition that makes the processor execute an ISR (Interrupt Service

Routine).

4) In the ISR, processor will perform data Transfer with the I/O device.

5) This relieves the processor from periodically checking the status of every I/O device

thereby saves as

lot of time of the processor.

6) The processor is free to carry on its own operations.

7) Whenever a device wants to transfer data, it will interrupt the processor.

8) This is how many I/O devices Transfer data with the processor.

9) E.g.:: Keyboard. Instead of the processor checking all the time, whether a key is pressed,

the

keyboard interrupts the processor as an when we press a key. In the ISR of the keyboard,

which is a

part of the keyboard driver software, the processor will read the data from the keyboard.

10) Hence interrupt driven I/O is much better than Polled I/O (Programmed I/O).

INTERRUPT HANDLING MECHANISM

1) When an interrupt occurs, processor, firstly, finishes the current instruction.

2) It then suspends the current program and executes an ISR.

3) To do so, it Pushes the value of PC (address of next instruction), into the stack.

4) Now it loads the ISR address into PC and proceeds to execute the ISR.

5) At the end of the ISR, it POPs the return address from the stack and loads it back into PC.

6) This is how the processor return to the very next instruction in the program.

3) DMA BASED I/O

DMA means transferring data directly between memory and I/O.

DMA transfers are very fast as compared to Processor based transfers due to two reasons.

1. They are hardware based so no time is wasted in fetching and decoding instructions.

2. Transfers are directly between memory and I/O without data going via the Processor.

To Perform a DMA transfer we need a DMA Controller like 8237/ 8257.

It is capable of taking control of the buses from the Processor.

The process is performed as follows.

1) By Default Processor is the bus master.

2) The DMA transfer parameters first initialized by the processor.

3) Processor programs two registers inside the DMAC called CAR and CWCR giving the

starting

address and the number of bytes to be transferred.

4) DMAC now ensures that the I/O device is ready for the transfer by checking the DREQ

signal.

5) If DREQ=1, then DMAC gives HOLD signal to the Processor requesting control of the

system bus.

6) Processor releases control of the bus after finishing the current machine (bus) cycle.

7) Processor gives HLDA informing DMAC that it is now the bus master.

8) DMAC issues DACK# (by default active low, but can be changed) to I/O device indicating

that the

transfer is about to begin.

9) Now DMAC transfers one byte in one cycle.

10) After every byte is transferred the Address register and Count register are decremented

by 1.

11) This repeats till Count reaches “0” also called Terminal Count.

12) Now the transfer is complete.

13) DMAC returns the system bus to Processor by making HOLD = 0.

14) Processor once again becomes bus master.

Advantage of DMA

DMA transfers are very fast.

Drawback of DMA

DMAC becomes the bus master. Hence during DMA cycles, the processor cannot perform any

operations

as the bus is already being used for DMA. The processor remains in HOLD state.

Difference between Interrupt Request and DMA request

When an interrupt occurs, the processor has to suspend the current program, execute the ISR

and then

return to the next instruction of the main program. Hence it is necessary that the processor

completes the current instruction before servicing an interrupt request.

When a DMA request occurs, the processor has to simply relinquish (give away) control of the

system bus

and enter hold state. When ever it gets back the bus it can resume from where it had left.

Hence the processor need not finish the current instruction before servicing a DMA request.

It simply has to finish the current machine cycle. Hence Instruction cycles are Interrupt

Breakpoints and Machine cycles are DMA breakpoints.

TYPES / METHODS / TECHNIQUES OF DMA TRANSFERS

There are four modes of data transfer:

1) BLOCK TRANSFER MODE / BURST MODE.

In this mode, the DMAC is programmed to transfer ALL THE BYTES in one complete DMA

operation. After a byte is transferred, the CAR and CWCR are adjusted accordingly. The

system bus is returned to the processor, ONLY after all the bytes are transferred. It is the

fastest form of DMA but keeps the processor inactive for a long time.

2) SINGLE BYTE TRANSFER MODE/ CYCLE STEALING.

Once the DMAC becomes the bus master, it will transfer only ONE BYTE and return the bus

to the processor. As soon as the processor performs one bus cycle, DMAC will once again take

the bus back from the processor. Hence both DMAC and processor are constantly stealing

bus cycles from each other. It is the most popular method of DMA, because it keeps the

processor active in the background. After a byte is transferred, the CAR and CWCR are

adjusted accordingly.

3) DEMAND TRANSFER MODE.

It is very similar to Block Transfer, except that the DREQ must remain active throughout

the DMA operation. If during the operation DREQ goes low, the DMA operation is stopped

and the busses are returned to the processor.

In the meantime, the processor can continue with its own operations. Once DREQ goes high

again, the DMA operation continues from where it had stopped. This means, the transfer

happens on demand from the I/O device, hence the name.

4) HIDDEN MODE / TRANSPARENT MODE.

In this mode, once the processor programs all parameters inside the DMAC, the DMAC

does not request the processor for the control of the bus. Instead, it observes the processor. It

waits for the processor to enter idle state. Once the processor is idle, the DMAC will take

control of the bus and perform the Transfer. So, the Transfer is totally transparent to the

processor or hidden from the processor. Hence the name.

Interrupts and Exceptions:

Interrupt

The term Interrupt is usually reserved for hardware interrupts. They are program control

interruptions caused by external hardware events. Here, external means external to the CPU.

Hardware interrupts usually come from many different sources such as timer chip, peripheral

devices (keyboards, mouse, etc.), I/O ports (serial, parallel, etc.), disk drives, CMOS clock,

expansion cards (sound card, video card, etc). That means hardware interrupts almost never

occur due to some event related to the executing program.

Example –

An event like a key press on the keyboard by the user, or an internal hardware timer timing out

can raise this kind of interrupt and can inform the CPU that a certain device needs some

attention. In a situation like that the CPU will stop whatever it was doing (i.e. pauses the current

program), provides the service required by the device and will get back to the normal program.

When hardware interrupts occur and the CPU starts the ISR, other hardware interrupts are

disabled (e.g. in 80×86 machines). If you need other hardware interrupts to occur while the ISR

is running, you need to do that explicitly by clearing the interrupt flag (with sti instruction). In

80×86 machines, clearing the interrupt flag will only affect hardware interrupts.

 Exception

Exception is a software interrupt, which can be identified as a special handler routine. An

exception occurs due to an “exceptional” condition that occurs during program execution.

Example –

Division by zero, execution of an illegal opcode or memory related fault could cause

exceptions. Whenever an exception is raised, the CPU temporarily suspends the program it was

executing and starts the ISR. ISR will contain what to do with the exception. It may correct the

problem or if it is not possible it may abort the program gracefully by printing a suitable error

message. Although a specific instruction does not cause an exception, an exception will always

be caused by an instruction. For example, the division by zero error can only occur during the

execution of the division instruction.

Exceptions and interrupts are unexpected events which will disrupt the normal flow of

execution of instruction (that is currently executing by processor). An exception is an

unexpected event from within the processor. Interrupt is an unexpected event from outside the

processor. Whenever an exception or interrupt occurs, the hardware starts executing the code

that performs an action in response to the exception. This action may involve killing a process,

outputting an error message, communicating with an external device, or horribly crashing the

entire computer system by initiating a “Blue Screen of Death” and halting the CPU. The

instructions responsible for this action reside in the operating system kernel, and the code that

performs this action is called the interrupt handler code. handler code is an operating system

subroutine. Then, After the handler code is executed, it may be possible to continue execution

after the instruction where the execution or interrupt occurred.

Whenever an exception or interrupt occurs, execution transitions from user mode to kernel

mode where the exception or interrupt is handled. The following steps must be taken to handle

an exception or interrupts:

While entering the kernel, the context (values of all CPU registers) of the currently executing

process must first be saved to memory. The kernel is now ready to handle the

exception/interrupt.

1) Determine the cause of the exception/interrupt.

2) Handle the exception/interrupt.

When the exception/interrupt have been handled the kernel performs the following steps:

1) Select a process to restore and resume.

2) Restore the context of the selected process.

3) Resume execution of the selected process.

At any point in time, the values of all the registers in the CPU defines the context of the CPU.

Another name used for CPU context is CPU state.

Types of interrupts:

1. VECTORED AND NON-VECTORED INTERRUPTS

A key element in interrupt handling is the ISR address.

If an interrupt has a fixed ISR address, it is called a Vectored interrupt.

Such interrupts are executed faster as the ISR address is known to the processor.

But such interrupts are rigid. Since they have a fixed ISR address they can serve only one

device. They cannot accept interrupts from multiple devices. So they cannot expand the

interrupt structure.

E.g: NMI interrupt of 8086 (Has a fixed vector number i.e. 2)

If an interrupt does not have a fixed ISR address, it is called a Non-Vectored interrupt.

Such interrupts are executed slower. The ISR address is obtained from the interrupting

device, usually an interrupt controller like 8259. But such interrupts are flexible. Since they

don’t have a fixed ISR address they can accept interrupts from multiple devices. So they

can be used to expand the interrupt structure.

E.g: INTR interrupt of 8086 (Can service any vector number from 0… 255)

2. MASKABLE AND NON MASKABLE INTERRUPTS

Masking an interrupt means disabling it. A Maskable interrupt is an interrupt that can be

disabled. If disabled, whenever this interrupt occurs, the processor will ignore it and simply

continue the main program. Such interrupts are generally used to handle low priority, non-

critical events like keyboard presses which can be easily disabled (Keypad can be locked)

E.g.:: INTR interrupt of 8086 (is disabled when Interrupt Flag is 0)

 A Non-Maskable interrupt is an interrupt that cannot be disabled. Whenever this interrupt

occurs, the processor will have to service it. Such interrupts are generally used to handle high

priority, critical events like over-heating of the mother board, power failure etc.

E.g.:: NMI interrupt of 8086 (can never be disabled)

3. SOFTWARE AND HARDWARE INTERRUPTS

This is based on how the interrupt occurs.

If an interrupt is caused by writing an instruction, it is called a software

interrupt(Exception). Software interrupts are predictable events and are given by the

programmer.

E.g.:: INT n instruction of 8086 (n can be anything between 0… 255)

If an interrupt is caused by a signal on an external pin, it is called a hardware interrupt.

Hardware interrupts are un-predictable events and are given by external devices.

E.g.:: NMI and INTR pins of 8086

I/O Device Interfaces:

Universal Serial Bus (USB):

The Universal Serial Bus (USB) [1] is the most widely used interconnection standard. A large

variety of devices are available with a USB connector, including mice, memory keys, disk

drives, printers, cameras, and many more. The commercial success of the USB is due to its

simplicity and low cost. The original USB specification supports two speeds of operation,

called low-speed (1.5 Megabits/s) and full-speed (12 Megabits/s). Later, USB 2, called High-

Speed USB, was introduced. It enables data transfers at speeds up to 480 Megabits/s. As I/O

devices continued to evolve with even higher speed requirements, USB 3 (called Superspeed)

was developed. It supports data transfer rates up to 5 Gigabits/s.

The USB has been designed to meet several key objectives:

• Provide a simple, low-cost, and easy to use interconnection system

• Accommodate a wide range of I/O devices and bit rates, including Internet connections, and

audio and video applications

• Enhance user convenience through a “plug-and-play” mode of operation

Plug-and-Play

When an I/O device is connected to a computer, the operating system needs some information

about it. It needs to know what type of device it is so that it can use the appropriate device

driver. It also needs to know the addresses of the registers in the device’s interface to be able

to communicate with it. The USB standard defines both the USB hardware and the software

that communicates with it. Its plug-and-play feature means that when a new device is

connected, the system detects its existence automatically. The software determines the kind of

device and how to communicate with it, as well as any special requirements it might have. As

a result, the user simply plugs in a USB device and begins to use it, without having to get

involved in any of these details. The USB is also hot-pluggable, which means a device can be

plugged into or removed from a USB port while power is turned on.

USB Architecture:

The USB uses point-to-point connections and a serial transmission format. When multiple

devices are connected, they are arranged in a tree structure as shown in Figure below:

Each node of the tree has a device called a hub, which acts as an intermediate transfer point

between the host computer and the I/O devices. At the root of the tree, a root hub connects

the entire tree to the host computer. The leaves of the tree are the I/O devices: a mouse, a

keyboard, a printer, an Internet connection, a camera, or a speaker.

If I/O devices are allowed to send messages at any time, two messages may reach the hub at

the same time and interfere with each other. For this reason, the USB operates strictly on the

basis of polling. A device may send a message only in response to a poll message from the host

processor. Hence, no two devices can send messages at the same time. This restriction allows

hubs to be simple, low-cost devices. Each device on the USB, whether it is a hub or an I/O

device, is assigned a 7-bit address. The root hub of the USB, which is attached to the processor,

appears as a single device. The host software communicates with individual devices by sending

information to the root hub, which it forwards to the appropriate device in the USB tree.

When a device is first connected to a hub, or when it is powered on, it has the address 0.

Periodically, the host polls each hub to collect status information and learn about new devices

that may have been added or disconnected. When the host is informed that a new device has

been connected, it reads the information in a special memory in the device’s USB interface to

learn about the device’s capabilities. It then assigns the device a unique USB address and writes

that address in one of the device’s interface registers. It is this initial connection procedure that

gives the USB its plug-and-play capability.

Isochronous Traffic on USB

An important feature of the USB is its ability to support the transfer of isochronous data in a

simple manner. Isochronous data need to be transferred

at precisely timed regular intervals. To accommodate this type of traffic, the root hub transmits

a uniquely recognizable sequence of bits over the USB tree every millisecond. This sequence

of bits, called a Start of Frame character, acts as a marker indicating the beginning of

isochronous data, which are transmitted after this character. Thus, digitized audio and video

signals can be transferred in a regular and precisely timed manner.

Electrical Characteristics:

USB connections consist of four wires, of which two carry power, +5 V and Ground, and two

carry data. Thus, I/O devices that do not have large power requirements can be powered directly

from the USB. This obviates the need for a separate power supply for simple devices such as a

memory key or a mouse.

Two methods are used to send data over a USB cable. When sending data at low speed, a high

voltage relative to Ground is transmitted on one of the two data wires to represent a 0 and on

the other to represent a 1. The Ground wire carries the return current in both cases. Such a

scheme in which a signal is injected on a wire relative to ground is referred to as single-ended

transmission.

The speed at which data can be sent on any cable is limited by the amount of electrical noise

present. The term noise refers to any signal that interferes with the desired data signal and

hence could cause errors. Single-ended transmission is highly susceptible to noise. The voltage

on the ground wire is common to all the devices connected to the computer. Signals sent by

one device can cause small variations in the voltage on the ground wire, and hence can interfere

with signals sent by another device. Interference can also be caused by one wire picking up

noise from nearby wires. The High-Speed USB uses an alternative arrangement known as

differential signalling. The data signal is injected between two data wires twisted together. The

ground wire is not involved. The receiver senses the voltage difference between the two signal

wires directly,

without reference to ground. This arrangement is very effective in reducing the noise seen by

the receiver, because any noise injected on one of the two wires of the twisted pair is also

injected on the other. Since the receiver is sensitive only to the voltage difference between the

two wires, the noise component is cancelled out. The ground wire acts as a shield for the data

on the twisted pair against interference from nearby wires. Differential signalling allows much

lower voltages and much higher speeds to be used compared to single-ended signalling.

SCSI Bus:

The acronym SCSI stands for Small Computer System Interface. It refers to a standard bus

defined by the American National Standards Institute (ANSI). The SCSI bus may be used to

connect a variety of devices to a computer. It is particularly well-suited for use with disk drives.

It is often found in installations such as institutional databases or email systems where many

disks drives are used.

In the original specifications of the SCSI standard, devices are connected to a computer via a

50-wire cable, which can be up to 25 meters in length and can transfer data at rates of up to 5

Megabytes/s. The standard has undergone many revisions, and its data transfer capability has

increased rapidly. SCSI-2 and SCSI-3 have been defined, and each has several options. Data

are transferred either 8 bits or 16 bits in parallel, using clock speeds of up to 80 MHz. There

are also several options for the electrical signaling scheme used. The bus may use single-ended

transmission, where each signal uses one wire, with a common ground return for all signals. In

another option, differential signaling is used, with a pair of wires for each signal. wires for each

signal.

Data Transfer

Devices connected to the SCSI bus are not part of the address space of the processor in the

same way as devices connected to the processor bus or to the PCI bus. A SCSI bus may be

connected directly to the processor bus, or more likel y to another standard I/O bus such as

PCI, through a SCSI controller. Data and commands are transferred in the form of multi-byte

messages called packets. To send commands or data to a device, the processor assembles the

information in the memory then instructs the SCSI controller to transfer it to the device.

Similarly, when data are read from a device, the controller transfers the data to the memory

and then informs the processor by raising an interrupt.

To illustrate the operation of the SCSI bus, let us consider how it may be used with a disk drive.

Communication with a disk drive differs substantially from communication with the main

memory. Data are stored on a disk in blocks called sectors, where each sector may contain

several hundred bytes. When a data file is written on a disk, it is not always stored in contiguous

sectors. Some sectors may already contain previously stored information; others may be

defective and must be skipped. Hence, a Read or Write request may result in accessing several

disk sectors that are not necessarily contiguous. Because of the constraints of the mechanical

motion of the disk, there is a long delay, on the order of several milliseconds, before reaching

the first sector to or from which data are to be

transferred. Then, a burst of data are transferred at high speed. Another delay may ensue to

reach the next sector, followed by a burst of data. A single Read or Write request may involve

several such bursts. The SCSI protocol is designed to facilitate this mode of operation. Let us

examine a complete Read operation as an example. The following is a simplified high-level

description, ignoring details and signaling conventions. Assume that the processor wishes to

read a block of data from a disk drive and that these data are stored in two disk sectors that are

not contiguous. The processor sends a command to the SCSI controller, which causes the

following sequence of events to take place:

1. The SCSI controller contends for control of the SCSI bus.

2. When it wins the arbitration process, the SCSI controller sends a command to the disk

controller, specifying the required Read operation.

3. The disk controller cannot start to transfer data immediately. It must first move the read head

of the disk to the required sector. Hence, it sends a message to the SCSI controller indicating

that it will temporarily suspend the connection between them. The SCSI bus is now free to be

used by other devices.

4. The disk controller sends a command to the disk drive to move the read head to the first

sector involved in the requested Read operation. It reads the data stored in that sector and stores

them in a data buffer. When it is ready to begin transferring data, it requests control of the bus.

After it wins arbitration, it re-establishes the connection with the SCSI controller, sends the

contents of the data buffer, then suspends the connection again.

5. The process is repeated to read and transfer the contents of the second disk sector.

6. The SCSI controller transfers the requested data to the main memory and sends an interrupt

to the processor indicating that the data are now available.

This scenario shows that the messages exchanged over the SCSI bus are at a higher level than

those exchanged over the processor bus. Messages refer to more complex operations that may

require several steps to complete, depending on the device. Neither the processor nor the SCSI

controller need be aware of the details of the disk’s operation and how it moves

from one sector to the next. The SCSI bus standard defines a wide range of control messages

that can be used to handle different types of I/O devices. Messages are also defined to deal with

various error or failure conditions that might arise during device operation or data transfer.

UNIT-5

Pipelining and Parallel Processors

Basic Concepts of Pipelining :

Introduction:

1. Pipelining is a technique of decomposing a sequential process into suboperations, with

each subprocess being executed in a special dedicated segment that operates

concurrently with all other segments.

2. A pipeline can be visualized as a collection of processing segments through which

binary information flows.

3. Each segment performs partial processing dictated by the way the task is partitioned.

4. The result obtained from the computation in each segment is transferred to the next

segment in the pipeline. The final result is obtained after the data have passed through

all segments.

5. It is characteristic of pipelines that several computations can be in progress in distinct

segments at the same time. The overlapping of computation is made possible by

associating a register with each segment in the pipeline. The registers provide isolation

between each segment so that each can operate on distinct data simultaneously.

Pipeline organization is demonstrated by means of a simple example.

Suppose that we want to perform the combined multiply and add operations with a stream of

numbers. Ai* Bi + Ci for i = 1, 2, 3, . . . , 7 Each suboperation is to be implemented in a segment

within a pipeline. Each segment has one or two registers and a combinational circuit as shown

in Fig below:

The suboperations performed in each segment of the pipeline are as follows:

R 1 <--Ai, R2 <--Bi

R3 <--R 1 * R2, R4 <--C,

R5 <--R3 + R4

• Input A, and B,

• Multiply and input C,

• Add C; to product

Example of pipeline processing.

 Table: Contents of Registers in pipeline

The five registers are loaded with new data every clock pulse. The first clock pulse transfers

A1 and B1 into R 1 and R2. The second dock pulse transfers the product of R 1 and R2 into

R3 and C1 into R4. The same clock pulse transfers A2 and B2 into R 1 and R2. The third clock

pulse operates on all three segments simultaneously. It places A, and B, into R1 and R2,

transfers the product of R1 and R2 into R3, transfers C, into R4, and places the sum of R3 and

R4 into RS. It takes three clock pulses to fill up the pipe and retrieve the first output from RS.

From there on, each dock produces a new output and moves the data one step down the pipeline.

This happens as long as new input data flow into the system. When no more input data are

available, the clock must continue until the last output emerges out of the pipeline.

Instruction Pipelining:

Instruction Pipelining is an implementation technique in which multiple instructions are

overlapped in execution. An instruction requires several steps which mainly involve fetching,

decoding and execution.

If these steps are performed one after the other, they will take a long time.

As processors became faster, several of these steps started to get overlapped, resulting in faster

processing. This is done by a mechanism called pipelining.

2 STAGE PIPELINING - 8086

Here the instruction process in divided into two stages of fetching and execution. Fetching of

the next instruction takes place while the current instruction is being executed. Hence two

instructions are being processed at any point of time.

3 STAGE PIPELINING –ARM 7

Consider the case where a k-segment pipeline with a clock cycle time tp ,is used to execute n

tasks. The first task T1 requires a time equal to Ktp, to complete its operation since there are k

segments in the pipe. The remaining n - 1 tasks emerge from the pipe at the rate of one task per

clock cycle and they will be completed after a time equal to (n - 1) tp . Therefore, to complete

n tasks using a k-segment pipeline requires k + (n - 1) clock cycles.

Next consider a non-pipeline unit that performs the same operation and

takes a time equal to tn. to complete each task. The total time required for n tasks is ntn. The

speedup of a pipeline processing over an equivalent non-pipeline processing is defined by the

ratio

ADVANTAGE OF PIPELINING

The advantage of pipelining is that it increases the performance. As shown by the various

examples above, deeper the pipelining, more is the level of parallelism, and hence the processor

becomes much faster.

DRAWBACKS/ HAZARDS OF PIPELINING

There are various hazards of pipelining, which cause a dip in the performance of the processor.

These hazards become even more prominent as the number of pipeline stages increase.

They may occur

due to the following reasons.

1) DATA HAZARD/ DATA DEPENDENCY HAZARD

Data Hazard is caused when the result (destination) of one instruction becomes the operand

(source) of the next instruction.

Consider two instructions I1 and I2 (I1 being the first).

Assume I1: INC [4000H]

Assume I2: MOV BL , [4000H]

Clearly in I2, BL should get the incremented value of location [4000H].

But this can only happen once I1 has completely finished execution and also written back the

result at [4000H].

In a multistage pipeline, I2 may reach execution stage before I1 has finished storing the result

at location [4000H], and hence get a wrong value of data.

This is called data dependency hazard.

It is solved by inserting NOP (No operation) instructions between such data dependent

instructions.

Because of the data hazard, there will be a delay in the pipeline. The data hazards are basically

of three types:

1. RAW

2. WAR

3. WAW

To understand these hazards, we will assume we have two instructions I1 and I2, in such a way

that I2 follows :

RAW:

RAW hazard can be referred to as 'Read after Write'. It is also known as Flow/True data

dependency. If the later instruction tries to read on operand before earlier instruction writes it,

in this case, the RAW hazards will occur. The condition to detect the RAW hazard is when On

(Output of nth instruction) and In+1(Input of n+1th instruction) both have a minimum one

common operand.

I1: add R1, R2, R3

I2: sub R5, R1, R4

WAR

WAR can be referred to as 'Write after Read'. It is also known as Anti-Data dependency. If the

later instruction tries to write an operand before the earlier instruction reads it, in this case, the

WAR hazards will occur. The condition to detect the WAR hazard is when In and On+1 both

have a minimum one common operand.

add R1, R2, R3

sub R2, R5, R4

In a reasonable (in-order) pipeline, the WAR hazard is very uncommon or impossible.

WAW

WAW can be referred to as 'Write after Write'. It is also known as Output Data dependency. If

the later instruction tries to write on operand before earlier instruction writes it, in this case, the

WAW hazards will occur. The condition to detect the WAW hazard is when On and On+1 both

have a minimum one common operand.

add R1, R2, R3

sub R1, R2, R4

2) CONTROL HAZARD/ CODE HAZARD

Pipelining assumes that the program will always flow in a sequential manner.

Hence, it performs various stages of the forthcoming instructions before-hand, while the

current instruction is still being executed. While programs are sequential most of the times, it

is not true always.

Sometimes, branches do occur in programs.

In such an event, all the forthcoming instructions that have been fetched/ decoded etc have to

be flushed/ discarded, and the process has to start all over again, from the branch address. This

causes pipeline bubbles, which simply means time of the processor is wasted. Consider the

following set of instructions:

Start:

JMP Down

INC BL

MOV CL, DL

ADD AL, BL

…

…

…

Down: DEC CH

JMP Down is a branch instruction.

After this instruction, program should jump to the location “Down” and continue with DEC

CH

instruction.

But, in a multistage pipeline processor, the sequentially next instructions after JMP Down have

already been fetched and decoded. These instructions will now have to be discarded and

fetching will begin all over again from DEC CH. This will keep several units of the architecture

idle for some time. This is called a pipeline bubble. The problem of branching is solved in

higher processors by a method called “Branch Prediction Algorithm”. It was introduced by

Pentium processor. It relies on the previous history of the instruction as most programs are

repetitive in nature. It then makes a prediction whether branch will be taken or not and hence

puts the correct instructions in the pipelines.

3) STRUCTURAL HAZARD

Structural hazards are caused by physical constraints in the architecture like the buses. Even

in the most basic form of pipelining, we want to execute one instruction and fetch the next one.

Now as long as execution only involves registers, pipelining is possible. But if execution

requires to read/ write data from the memory, then it will make use of the buses, which

means fetching cannot take place at the same time. So the fetching unit will have to wait

and hence a pipeline bubble is caused. This problem is solved in complex Harvard architecture

processors, which use separate memories and separate buses for programs and data. This means

fetching and execution can actually happen at the same time without any interference with each

other.

E.g.: PIC 18 Microcontroller.

Introduction to Parallel Processors:

• A multiprocessor system is an interconnection of two or more CPUs with memory and

input-output equipment. The term "processor" In multiprocessor can mean either a

central processing unit (CPU) or an input-output processor (lOP).

• However, a system with a single CPU and one or more lOPs is usually not included in

the definition of a multiprocessor system unless the lOP has computational facilities

comparable to a CPU.

• Multiprocessors are classified as multiple instruction stream, multiple data stream

(MIMD) systems.

• A multiprocessor system is controlled by one operating system that provides interaction

between processors and all the components of the system cooperate in the solution of a

problem.

• The fact that microprocessors take very little physical space and are very inexpensive

brings about the feasibility of interconnecting a large number of microprocessors into

one composite system.

• Very-large-scale integrated circuit technology has reduced the cost of computer

components to such a low level that the concept of applying multiple processors to meet

system performance requirements has become an attractive design possibility.

• Multiprocessing improves the reliability of the system so that a failure or error in one

part has a limited effect on the rest of the system. If a fault causes one processor to fail,

a second processor can be assigned to perform the functions of the disabled processor.

The system as a whole can continue to function correctly with perhaps some loss in

efficiency.

• A multiprocessor system derives its high performance from the fact that computations

can proceed in parallel in one of two ways.

1. Multiple independent jobs can be made to operate in parallel.

2. A single job can be partitioned into multiple parallel tasks.

• An overall function can be partitioned into a number of tasks that each processor can

handle individually. System tasks may be allocated to special purpose processors whose

design is optimized to perform certain types of processing efficiently.

• Example is a computer where one processor performs highspeed floating-point

mathematical computations and another takes care of routine data-processing tasks.

• Multiprocessors are classified by the way their memory is organized.

1. A multiprocessor system with common shared memory is classified as a shared

memory or tightly coupled multiprocessor. This does not preclude each

processor from having its own local memory. In fact, most commercial tightly

coupled multiprocessors provide a cache memory with each CPU. In addition,

there is a global common memory that all CPUs can access. Information can

therefore be shared among the CPUs by placing it in the common global

memory.

2. An alternative model of microprocessor is the distributed-memory or loosely

coupled system. Each processor element in a loosely coupled system has its

own private local memory. The processors are tied together by a switching

scheme designed to route information from one processor to another through a

message- passing scheme. The processors relay program and data to other

processors in packets. A packet consists of an address, the data content, and

some error detection code. The packets are addressed to a specific processor or

taken by the first available processor, depending on the communication system

used.

Shared Memory Multiprocessors:

• A multiprocessor system consists of a number of processors capable of

simultaneously executing independent tasks. A task may encompass a few

instructions for one pass through a loop, or thousands of instructions executed in a

subroutine.

• In a shared-memory multiprocessor, all processors have access to the same

memory. Tasks running in different processors can access shared variables in the

memory using the same addresses. The size of the shared memory is likely to be

large.

• Implementing a large memory in a single module would create a bottleneck

when many processors make requests to access the memory simultaneously.

This problem is alleviated by distributing the memory across multiple modules

so that simultaneous requests from different processors are more likely to access

different memory modules, depending on the addresses of those requests.

• An interconnection network enables any processor to access any module that

is a part of the shared memory. When memory modules are kept physically

separate from the processors, all requests to access memory must pass through the

network. Below Figure shows such an arrangement.

• A system which has the same network latency for all accesses from the

processors to the memory modules is called a Uniform Memory Access (UMA)

multiprocessor.

Fig: A UMA multiprocessor.

• For better performance, it is desirable to place a memory module close to each

processor. The result is a collection of nodes, each consisting of a processor and a

memory module. The nodes are then connected to the network, as shown in Figure

below:

Fig: A NUMA multiprocessor.

• The network latency is avoided when a processor makes a request to access its local

memory. However, a request to access a remote memory module must pass through

the network. Because of the difference in latencies for accessing local and

remote portions of the shared memory, systems of this type are called Non-

Uniform Memory Access (NUMA) multiprocessors.

Interconnection Networks:

• The interconnection network must allow information transfer between any pair of

nodes in the system. The network may also be used to broadcast information from

one node to many other nodes. The traffic in the network consists of requests (such

as read and write)

and data transfers.

• The suitability of a particular network is judged in terms of cost, bandwidth,

effective throughput, and ease of implementation. The term bandwidth refers

to the capacity of a transmission link to transfer data and is expressed in bits

or bytes per second. The effective throughput is the actual rate of data transfer.

This rate is less than the available bandwidth because a given link must also

carry control information that coordinates the transfer of data.

• Information transfer through the network usually takes place in the form of

packets of fixed length and specified format. For example, a read request is likely

to be a single packet sent from a processor to a memory module. The packet contains

the node identifiers for the source and destination, the address of the location to be

read, and a command field that indicates what type of read operation is required. A

write request that writes one word in a memory module is also likely to be a single

packet that includes the data to be written. On the other hand, a read response may

involve an entire cache block requiring several packets for the data transfer.

• Ideally, a complete packet would be handled in parallel in one clock cycle at

any node or switch in the network. This implies having wide links, comprising

many wires. However, to reduce cost and complexity, the links are often

considerably narrower. In such cases, a packet must be divided into smaller

pieces, each of which can be transmitted in one clock cycle.

• The following are few of the interconnection networks that are commonly used in

multiprocessors:

Bus:

A bus is a set of lines (wires) that provide a single shared path for information

transfer. Buses are most commonly used in UMA multiprocessors to connect a

number of processors to several shared-memory modules. Arbitration is necessary

to ensure that only one of many possible requesters is granted use of the bus at

any time.

The bus is suitable for a relatively small number of processors because of the

contention for access to the bus when many processors are connected. A simple

bus does not allow a new request to appear on the bus until the response for

the current request has been provided. However, if the response latency is high,

there may be considerable idle time on the bus. Higher performance can be achieved

by using a split-transaction bus, in which a request and its corresponding

response are treated as separate events. Other transfers may take place

between them.

Ring:

A ring network is formed with point-to-point connections between nodes, as shown

in Figure below:

Fig: Simple Ring

A long single ring results in high average latency for communication between any

two nodes. This high latency can be mitigated in two different ways. A second ring

can be added to connect the nodes in the opposite direction. The resulting

bidirectional ring halves the average latency and doubles the bandwidth. However,

handling of communications is more complex.

Another approach is to use a hierarchy of rings. A two-level hierarchy is shown in

Figure below: The upper-level ring connects the lower-level rings. The average

latency for communication between any two nodes on lower-level rings is reduced

with this arrangement. Transfers between nodes on the same lower-level ring need

not traverse the

upper-level ring. Transfers between nodes on different lower-level rings include a

traversal on part of the upper-level ring.

Crossbar:

 A crossbar is a network that provides a direct link between any pair of units

connected to the network. It is typically used in UMA multiprocessors to connect

processors to memory modules. It enables many simultaneous transfers if the same

destination is not the target of multiple requests. Below figure shows a crossbar that

comprises a collection of switches. For n processors and k memories, n × k switches

are needed.

Fig: Crossbar Interconnection Network

Mesh:

A natural way of connecting a large number of nodes is with a two-dimensional

mesh, as shown in Figure below:

Fig : A two-dimensional mesh network.

Each internal node of the mesh has four connections, one to each

of its horizontal and vertical neighbours. Nodes on the boundaries and corners of the mesh

have fewer neighbours and hence fewer connections. To reduce latency for communication

between nodes that would otherwise be far apart in the mesh, wrap around connections

may be introduced between nodes at opposite boundaries of the mesh. A network with

such connections is called a torus. All nodes in a torus have four connections. Average

latency is reduced, but the implementation complexity for routing requests and responses

through a torus is somewhat higher than in the case of a simple mesh.

Cache Coherence:

1. A shared-memory multiprocessor is easy to program. Each variable in a program has a

unique address location in the memory, which can be accessed by any processor.

However, each processor has its own cache. Therefore, it is necessary to deal with the

possibility that copies of shared data may reside in several caches.

2. When any processor writes to a shared variable in its own cache, all other caches that

contain a copy of that variable will then have the old, incorrect value. They must be

informed of the change so that they can either update their copy to the new value or

invalidate it. This is the issue of maintaining cache coherence, which requires having a

consistent view of shared data in multiple caches.

3. The write-through approach changes the data in both the cache and the main memory. The

write-back approach changes the data only in the cache; the main memory copy is updated

when a modified data block in the cache has to be replaced. Similar approaches can be

used to address cache coherence in a multiprocessor system.

Write Through Protocol:

A write-through protocol can be implemented in one of two ways:

1) First version is based on updating the values in other caches. When a processor writes a

new value to a block of data in its cache, the new value is also written into the memory module

containing the block being modified. Since copies of this block may exist in other caches,

these copies must be updated to reflect the change caused by the Write operation. The simplest

way of doing this is to broadcast the written data to the caches of all processors in the system.

As each processor receives the broadcast data, it updates the contents of the affected cache

block if this block is present in its cache.

2) The second version of the write-through protocol is based on invalidation of copies. When

a processor writes a new value into its cache, this value is also sent to the appropriate location

in memory, and all copies in other caches are invalidated. Again, broadcasting can be used to

send the invalidation requests throughout the system.

Write-Back protocol:

✓ Maintaining coherence with the write-back protocol is based on the concept of

ownership of a block of data in the memory. Initially, the memory is the owner of all

blocks, and the memory retains ownership of any block that is read by a processor to place a

copy in its cache.

✓ If some processor wants to write to a block in its cache, it must first become the

exclusive owner of this block. To do so, all copies in other caches must first be invalidated

with a broadcast request. The new owner of the block may then modify the contents at will

without having to take any other action.

✓ Read: When another processor wishes to read a block that has been

modified, the request for the block must be forwarded to the current owner. The data

are then sent to the requesting processor by the current owner. The data are also sent to the

appropriate memory module, which reacquires ownership and updates the contents of

the block in the memory. The cache of the processor that was the previous owner retains a

copy of the block. Subsequent requests from other processors to read the same block are

serviced by the memory module containing the block.

✓ When another processor wishes to write to a block that has been modified, the

current owner sends the data to the requesting processor. It also transfers ownership of the

block to the requesting processor and invalidates its cached copy. Since the block is being

modified by the new owner, the contents of the block in the memory are not updated. The

next request for the same block is serviced by the new owner.

✓ The write-back protocol has the advantage of creating less traffic than the

write-through protocol. This is because a processor is likely to perform several writes to a

cache block

before this block is needed by another processor. With the write-back protocol, these

writes are performed only in the cache, once ownership is acquired with an invalidation

request.

Snoopy Caches:

✓ In multiprocessors that connect a modest number of processors to the memory

modules using a single bus, cache

coherence can be realized using a scheme known as snooping.

✓ In a single-bus system, all transactions between processors and memory

modules occur via requests and responses on the bus. Suppose that each processor cache

has a controller circuit that observes, or snoops, all transactions on the bus.

✓ Below are some scenarios for the write-back protocol and how cache coherence

is enforced:

➢ Consider a processor that has previously read a copy of a block from the

memory into its cache. Before writing to this block for the first time, the processor must

broadcast an invalidation request to all other caches, whose controllers accept the

request and invalidate any copies of the same block. This action causes the requesting

processor to become the new owner of the block. The processor may then write to the block

and mark it as being modified. No further broadcasts are needed from the same processor to

write to the modified block in its cache.

➢ Now, if another processor broadcasts a read request on the bus for the same

block, the memory must not respond because it is not the current owner of the block. The

processor owning the requested block snoops the read request on the bus. Because it holds a

modified copy of the requested block in its cache, it asserts a special signal on the bus to

prevent the memory from responding. The owner then broadcasts a copy of the block on

the bus, and marks its copy as clean (unmodified). The data response on the bus is accepted

by the cache of the processor that issued the read request. The data response is also accepted

by the memory to update its copy of the block. In this case, the memory reacquires

ownership of the block, and the block is said to be in a shared state because copies of it

are in the caches of two processors. Coherence is maintained because the two cached copies

and the copy of the block in the memory contain the same data. Subsequent requests from

any processor are serviced by the memory.

➢ Consider now the situation in which two processors have copies of the same

block in their respective caches, and both processors attempt to write to the same cache

block at the same time. Since the block is in the shared state, the memory is the owner of

the block. Hence, both processors request the use of the bus to broadcast an invalidation

message. One of the processors is granted the use of the bus first. That processor broadcasts

its invalidation request and becomes the new owner of the block. Through snooping, the

copy of the block in the cache of the other processor is invalidated. When the other processor

is later granted the use of the bus, it broadcasts a read-exclusive request. This request

combines a read request and an invalidation request for the same block. The controller for

the first processor snoops the read-exclusive request, provides a data response on the bus, and

invalidates the copy in its cache. Ownership of the block is therefore transferred to the

second processor making the request. The memory is not updated because the block is

being modified again. Since the requests from the two processors are handled sequentially,

cache coherence is maintained at all times.

➢ The scheme just described is based on the ability of cache controllers to

observe the activity on the bus and take appropriate actions. Such schemes are called

snoopy-cache techniques.

Snooping based protocol

Directory-Based Cache Coherence:

The concept of snoopy caches is easy to implement in single-bus systems. Large shared

memory multiprocessors use interconnection networks such as rings and meshes. In such

systems, broadcasting every single request to the caches of all processors is inefficient. A

scalable, but more complex, solution to this problem uses directories in each memory module

to indicate which nodes may have copies of a given block in the shared state. If a block is

modified, the directory identifies the node that is the current owner. Each request from a

processor must be sent first to the memory module containing the relevant block. The

directory information for that block is used to determine the action that is taken. A read

request is forwarded to the current owner, if the block is modified. In the case of a write

request for a block that is shared, individual invalidations are sent only to nodes that may

have copies of the block in question. The cost and complexity of the directory-based approach

for enforcing cache coherence limits its use to large systems. Small multiprocessors, including

current multicore chips, typically use snooping.

Fig: Directory based protocol

